Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Structural and electronic properties of bulk and low-index surfaces of zincblende PtC
Date
2017-03-29
Author
Sensoy, Mehmet Gokhan
Toffoli, Daniele
Toffoli, Hande
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
89
views
0
downloads
Cite This
Transition metal carbides have been extensively used in diverse applications over the past decade. Their versatility is in part thanks to their unique bonding, which displays a mixture of ionic, metallic and covalent character. While the bulk structure of zincblende (ZB) PtC has been investigated several times, a detailed understanding of the electronic and structural properties of its low-index surfaces is lacking. In this work, we present an ab initio investigation of the properties of five crystallographic ZB PtC surfaces (Pt/C-terminated PtC(100), PtC(110) and Pt/C-terminated PtC(111)). Upon geometry optimization, both polar and nonpolar surfaces undergo a mild interlayer relaxation, without extensive reconstructions. Calculated vacancy formation energies indicate facile C removal on the (111) surface while Pt-vacancy formation is endothermic. Finally, atomic O adsorption energies on all surfaces reveal a high affinity of the C-terminated surfaces towards this species.
Subject Keywords
General Materials Science
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/48993
Journal
JOURNAL OF PHYSICS-CONDENSED MATTER
DOI
https://doi.org/10.1088/1361-648x/aa57e3
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Structural, electrical and optical properties of Ge implanted GaSe single crystals grown by Bridgman technique
KARAAĞAÇ, HAKAN; Parlak, Mehmet; KARABULUT, ORHAN; SERİNCAN, UĞUR; Turan, Raşit; Akinoglu, B. G. (Wiley, 2006-12-01)
Structural, optical and electrical properties of Ge implanted GaSe single crystal have been studied by means of X-Ray Diffraction (XRD), temperature dependent conductivity and photoconductivity (PC) measurements for different annealing temperatures. It was observed that upon implanting GaSe with Ge and applying annealing process, the resistivity is reduced from 2.1x10(9) to 6.5x10(5) ohm-em. From the temperature dependent conductivities, the activation energies have been found to be 4, 34, and 314 meV for a...
Structural, thermodynamical, and transport properties of undercooled binary Pd-Ni alloys
Kart, S. Ozdemir; Tomak, Mehmet; Uludogan, M.; Cagin, T. (Elsevier BV, 2006-11-05)
The solidification properties of Pd-Ni alloys are studied with constant-pressure, constant-temperature (TPN), and constant-volume, constant-temperature (TVN) molecular dynamics simulations based on quantum Sutton-Chen potential. Whether the system forms the glass structure or it transforms into ordered state is checked at various cooling rates ranging from 10 K/ps to 0.05 K/ps. The effect of concentration and cooling rates on the glass transition temperature is examined. The behavior of heat capacity at con...
Structural and temperature-dependent optical properties of thermally evaporated CdS thin films
IŞIK, MEHMET; Gullu, H. H.; Delice, S.; Parlak, Mehmet; Hasanlı, Nızamı (Elsevier BV, 2019-04-01)
In this work, structural and temperature dependent optical properties of thermally evaporated CdS thin films were investigated. X-ray diffraction, energy dispersive spectroscopy and Raman spectroscopy experiments were carried out to characterize the thin films and obtain information about the crystal structure, atomic composition, surface morphology and vibrational modes. Temperature-dependent transmission measurements were performed in between 10 and 300 K and in the spectral range of 400-1050 nm. The anal...
Structural and electrical characterization of Ag3Ga5Te9 and Ag3In5Se9 crystals
Parlak, Mehmet; Günal, İbrahim; Hasanlı, Nızamı (Wiley, 1998-01-01)
X-ray powder diffraction studies revealed that Ag3Ga5Te9 and Ag3In5Se9 crystallize in orthorhombic and tetragonal systems. respectively. The temperature dependent conductivity and Hall effect measurements have been carried out between 65-480 K. Ag3Ga5Te9 exhibits p-type conduction with a room temperature conductivity of 4.3 x 10(-4) (Omega.cm)(-1) and mobility less than 1 cm(2)/V.s. Ag3In5Se9 was identified to be n-type with room temperature conductivity 7.2 x 10(-5) (Omega.cm)(-1) and mobility 20 cm(2)/V.s...
Structural, optical and magnetic properties of Mn diffusion-doped CdS thin films prepared by vacuum evaporation
AKSU, SERDAR; BACAKSIZ, EMİN; Parlak, Mehmet; YILMAZ, ŞERİFE; POLAT, İSMAİL; Altunbas, M.; Turksoy, M.; Topkaya, R.; ÖZDOĞAN, Kemal (Elsevier BV, 2011-10-17)
The effect of Mn-doping on the vacuum deposited CdS thin films has been investigated by studying the changes in the structural, optical and magnetic properties of the films. A thin Mn layer evaporated on the CdS film surface served as the source layer for the diffusion doping. Doping was accomplished by annealing the CdS/Mn stack layers at the temperature range from 300 degrees C to 400 degrees C in step of 50 degrees C for 30 min under vacuum. The X-ray diffraction results showed that the undoped CdS film ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. G. Sensoy, D. Toffoli, and H. Toffoli, “Structural and electronic properties of bulk and low-index surfaces of zincblende PtC,”
JOURNAL OF PHYSICS-CONDENSED MATTER
, pp. 0–0, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48993.