Half plateaus in the linear thermal conductance of quantum point contacts

Turgut, Sadi
The linear thermal conductance of a quantum point contact displays a half-plateau structure, almost flat regions appearing close to half-integer multiples of the conductance quantum. This structure is investigated for the saddle-potential model; its behaviour as a function of contact parameters is also investigated. Half plateaus appear when the thermal energy is less than the subband separation and greater than the energy scale over which the transmission probability for a subband changes. The effect arises from the presence of a current node in the energy-resolved heat current, an energy at which the current is zero. When the transmission steps cross the current node as the gate voltage is varied, the heat conductance remains constant, creating the half plateaus, and this happens only for a certain temperature range. It is found that with increasing temperature the half plateaus become wider and flatter, which makes them more pronounced. It is also found that no half plateaus are present at the first step for any parameter values, and this is tied to the effect that the current node is pushed above the first step by the strong Seebeck potential.


Energy spectrum of a 2D Dirac oscillator in the presence of a constant magnetic field and an antidot potential
Akçay, Hüseyin; Sever, Ramazan (2016-07-04)
We investigate the energy spectrum and the corresponding eigenfunctions of a 2D Dirac oscillator confined by an antidot potential in the presence of a magnetic field and Aharonov-Bohm flux field. Analytical solutions are obtained and compared with the results of the Schrodinger equation found in the literature. Further, the dependence of the spectrum on the magnetic quantum number and on the repulsive potential is discussed.
Interacting electrons in a 2D quantum dot
Akman, N; Tomak, Mehmet (1999-04-01)
The exact numerical diagonalization of the Hamiltonian of a 2D circular quantum dot is performed for 2, 3, and 4 electrons. The results an compared with those of the perturbation theory. Our numerical results agree reasonably well for small values of the dimensionless coupling constant lambda = a/a(B) where a is the dot radius and a(B) is the effective Bohr radius. Exact diagonalization results are compared with the classical predictions, and they are found to be almost coincident for large lambda values.
Tuning the electron beam evaporation parameters for the production of hole and electron transport layers for perovskite solar cells
Coşar, Mustafa Bura; Özenbaş, Ahmet Macit; Department of Metallurgical and Materials Engineering (2019)
This study evaluates the use of electron beam evaporation technique for the deposition of electron and hole transport layers for perovskite solar cells where cell productions were performed in n-i-p structure. NiO and TiO layers were studied for hole transport layer and TiO2 and Nb2O5 layers were deposited for electron transport purposes. To optimize the suitable evaporation parameters for efficient perovskite cell production, single layers of each material were deposited at different conditions of oxygen f...
ILAIWI, KF; Tomak, Mehmet (Wiley, 1991-08-01)
The polarization of a quantum electron confined in square, parabolic, and triangular quantum wells is calculated numerically. The aim of the present calculations is to compare the results for various geometries.
Hopping conduction in Ga4Se3S layered single crystals
Qasrawi, A.F.; Hasanlı, Nızamı (Elsevier BV, 2008-11)
The conduction mechanism in Ga4Se3S single crystals has been investigated by means of dark and illuminated conductivity measurements for the first time. The temperature-dependent electrical conductivity analysis in the region of 100-350 K, revealed the dominance of the thermionic emission and the thermally assisted variable range hopping (VRH) of charged carriers above and below 170 K, respectively. The density of states near the Fermi level and the average hopping distance for this crystal in the dark were...
Citation Formats
M. A. ÇİPİLOĞLU and S. Turgut, “Half plateaus in the linear thermal conductance of quantum point contacts,” JOURNAL OF PHYSICS-CONDENSED MATTER, pp. 3671–3679, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/49180.