Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Klaster Cebirlerinin Mütasyon Sınıfları
Download
TVRZMU5qWTI.pdf
Date
2016
Author
Seven, Ahmet İrfan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
155
views
85
downloads
Cite This
Klaster cebirleri (cluster algebras) önce matematiğin klasik bir alanı olan temsil teorisinde ortaya çıkmış ve daha sonra varlığı diğer farklı alanlarda da farkedilmiş bir matematiksel yapıdır. Bu projede, klaster cebirlerini belirleyen mütasyon sınıflarının temel cebirselkombinatoryal özellikleri ortaya çıkarılmıştır. Bu kapsamda, matematiğin temel objelerinden olan Kac-Moody Lie cebirlerine karşılık gelen klaster cebirleri ile çeşitli sonlu mütasyon tipine sahip klaster cebirleri için mütasyon değişmezleri elde edilmiştir. Elde edilen sonuçlar, bu konular arasında yeni bağlantılar ortaya çıkarmış ve daha iyi anlaşılmalarına katkıda bulunmuştur. Projede elde edilen sonuç ve araçlar klaster cebirleri ile ilgili açık hesaplamalar yapmaya imkan vermektedir. Bu yönüyle proje, klaster cebirleri teorisinde önemli bir boşluğu doldurmuştur. Projede elde edilen sonuçlar dört makale olarak yazılmış ve çeşitli uluslararası bilimsel toplantılarda sunulmuştur.
URI
https://app.trdizin.gov.tr/publication/project/detail/TVRZMU5qWTI
https://hdl.handle.net/11511/50266
Collections
Department of Mathematics, Project and Design
Suggestions
OpenMETU
Core
Algebraic curves hermitian lattices and hypergeometric functions
Zeytin, Ayberk; Önsiper, Mustafa Hurşit; Department of Mathematics (2011)
The aim of this work is to study the interaction between two classical objects of mathematics: the modular group, and the absolute Galois group. The latter acts on the category of finite index subgroups of the modular group. However, it is a task out of reach do understand this action in this generality. We propose a lattice which parametrizes a certain system of ”geometric” elements in this category. This system is setwise invariant under the Galois action, and there is a hope that one can explicitly under...
Classification of skew-symmetric forms corresponding to cluster algebras with principal coefficients
Mazı, Sedanur; Seven, Ahmet İrfan; Department of Mathematics (2016)
In this thesis, we study algebraic and combinatorial properties of the skew-symmetric forms that correspond to cluster algebras with principal coefficients. We obtain a classification of these forms under congruence and compute the Arf invariants for finite types.
Studies on the generalized and reverse generalized bessel polynomials
Polat, Zeynep Sonay; Taşeli, Hasan; Department of Mathematics (2004)
The special functions and, particularly, the classical orthogonal polynomials encountered in many branches of applied mathematics and mathematical physics satisfy a second order differential equation, which is known as the equation of the hypergeometric type. The variable coefficients in this equation of the hypergeometric type are of special structures. Depending on the coefficients the classical orthogonal polynomials associated with the names Jacobi, Laguerre and Hermite can be derived as solutions of th...
Conformal symmetry in field theory
Huyal, Ulaş; Tekin, Bayram; Department of Physics (2011)
In this thesis, conformal transformations in d and two dimensions and the results of conformal symmetry in classical and quantum field theories are reviewed. After investigating the conformal group and its algebra, various aspects of conformal invariance in field theories, like conserved charges, correlation functions and the Ward identities are discussed. The central charge and the Virasoro algebra are briefly touched upon.
On the finite perimeter sets of sub-Lorentzian metric spaces
Çetin, Günseli; Sarıoğlu, Bahtiyar Özgür; Department of Physics (2022-8-25)
In this thesis, inspired by the recent progress on sub-Riemannian geometry, a method of determining the finite perimeter sets of sub-Lorentzian manifolds independent of the original metric structure is suggested and a possible version of Riesz Representation theorem is discussed.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. İ. Seven, “Klaster Cebirlerinin Mütasyon Sınıfları,” 2016. Accessed: 00, 2020. [Online]. Available: https://app.trdizin.gov.tr/publication/project/detail/TVRZMU5qWTI.