Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Graviton mass and memory
Download
Kilicarslan-Tekin2019_Article_GravitonMassAndMemory.pdf
Date
2019-2
Author
Kilicarslan, Ercan
Tekin, Bayram
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
Gravitational memory, a residual change, arises after a finite gravitational wave pulse interacts with free masses. We calculate the memory effect in massive gravity as a function of the graviton mass (mg) and show that it is discretely different from the result of general relativity: the memory is reduced not just via the usual expected Yukawa decay but by a numerical factor which survives even in the massless limit. For the strongest existing bounds on the graviton mass, the memory is essentially wiped out for the sources located at distances above 10 Mpc. On the other hand, for the weaker bounds found in the LIGO observations, the memory is reduced to zero for distances above 0.1 Pc. Hence, we suggest that careful observations of the gravitational wave memory effect can rule out the graviton mass or significantly bound it. We also show that adding higher curvature terms reduces the memory effect.
Subject Keywords
Physics and Astronomy (miscellaneous)
,
Engineering (miscellaneous)
URI
https://hdl.handle.net/11511/51676
Journal
The European Physical Journal C
DOI
https://doi.org/10.1140/epjc/s10052-019-6636-4
Collections
Department of Physics, Article