The shift on the inverse limit of a covering projection

1987-6
Tezer, Cem
A group endomorphismα : G → G is said to beweakly shift equivalent to the group endomorphismβ : H → H if there existsh ∈ H such thatα is shift equivalent to Ad[h] °β. Given covering projectionsa : X → X, b : Y → Y of compact, connected, locally path connected, semilocally simply connected metric spaces with fixed pointsx 0 ∈X,y 0 ∈Y respectively, the inverse limits ∑a=lim(X,a)={(xi)i∈Z+axi+1=x1,i∈Z+},∑a=lim(Y,b)={(yi)i∈Z+byi+1=y1,i∈Z+}, and the “shift” mapsσ a : Σ a → Σ a ,σ b : Σ b → Σ b defined byσ a((x i)i∈Z +)=(x i+1)i∈Z + ∈ Σ a ,σ b((y i)i∈Z +)=(y i + 1)i∈Z + ∈ Σ b are considered. It is proven that ifσ a andσ b are topologically conjugate thena # :π 1(X, x 0) →π 1(X, x 0) is weakly shift equivalent tob # :π 1(Y, y 0) →π 1(Y, y 0). Furthermore, ifa : X → X andb : Y → Y are expanding endomorphisms of compact differentiable manifolds, weak shift equivalence is a complete invariant of topological conjugacy. The use of this invariant is demonstrated by giving a complete classification of the shifts of expanding maps on the klein bottle. The reader is referred to Section 4 of this work for a detailed statement of results.
Israel Journal of Mathematics

Suggestions

Groups of automorphisms with TNI-centralizers
Ercan, Gülin (2018-03-15)
A subgroup H of a finite group G is called a TNI-subgroup if N-G(H) boolean AND H-9 = 1 for any g is an element of G \ N-G (H). Let A be a group acting on G by automorphisms where C-G(A) is a TNI-subgroup of G. We prove that G is solvable if and only if C-G(A) is solvable, and determine some bounds for the nilpotent length of G in terms of the nilpotent length of C-G(A) under some additional assumptions. We also study the action of a Frobenius group FH of automorphisms on a group G if the set of fixed point...
On the nilpotent length of a finite group with a frobenius group of automorphisms
Öğüt, Elif; Ercan, Gülin; Güloğlu, İsmail Ş.; Department of Mathematics (2013)
Let G be a finite group admitting a Frobenius group FH of automorphisms with kernel F and complement H. Assume that the order of G and FH are relatively prime and H acts regularly on the fixed point subgroup of F in G. It is proved in this thesis that the nilpotent length of G is less than or equal to the sum of the nilpotent length of the commutator group of G and F with 1 and the nilpotent length of the commutator group of G and F is equal to the nilpotent length of the fixed point subgroup of H in the co...
Orders of elements of equivariant J-groups of complex projective spaces
Onder, T (Elsevier BV, 2002-06-17)
A computable formula for the equivariant J-orders of the elements of JO(G)(CPn) is given for all finite groups G which do not have quaternionic type irreducible representations.
An obstruction to finding algebraic models for smooth manifolds with prescribed algebraic submanifolds
CELIKTEN, A; Ozan, Yıldıray (2001-03-01)
Let N ⊆ M be a pair of closed smooth manifolds and L an algebraic model for the submanifold N. In this paper, we will give an obstruction to finding an algebraic model X of M so that the submanifold N corresponds in X to an algebraic subvariety isomorphic to L.
A filtration on equivariant Borel-Moore homology
Bingham, Aram; Can, Mahir Bilen; Ozan, Yıldıray (2019-07-04)
Let G / H be a homogeneous variety and let X be a G-equivariant embedding of G / H such that the number of G-orbits in X is finite. We show that the equivariant Borel-Moore homology of X has a filtration with associated graded module the direct sum of the equivariant Borel-Moore homologies of the G-orbits. If T is a maximal torus of G such that each G-orbit has a T-fixed point, then the equivariant filtration descends to give a filtration on the ordinary Borel-Moore homology of X. We apply our findings to c...
Citation Formats
C. Tezer, “The shift on the inverse limit of a covering projection,” Israel Journal of Mathematics, pp. 129–149, 1987, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52080.