Standardless PIXE analysis of thick biomineral structures

Preoteasa, EA
Georgescu, R
Ciortea, C
Fluerasu, D
Harangus, L
Iordan, A
Severcan, Feride
Boyar, H
Preoteasa, E
Piticu, I
Pantelica, D
Gheordunescu, V
The particle-induced X-ray emission (PIXE) of thick biomineral targets provides pertinent surface analysis, but if good reference materials are missing then complementary approaches are required to handle the matrix effects. This is illustrated by our results from qualitative and semiquantitative analysis of biomaterials and calcified tissues in which PIXE usually detected up to 20 elements with Z > 14 per sample, many at trace levels. Relative concentrations allow the classification of dental composites according to the mean Z and by multivariate statistics. In femur bones from streptozotocin-induced diabetic rats, trace element changes showed high individual variability but correlated to each other, and multivariate statistics improved discrimination of abnormal pathology. Changes on the in vitro demineralization of dental enamel suggested that a dissolution of Ca compounds in the outermost layer results in the uncovering of deeper layers containing higher trace element levels. Thus, in spite of significant limitations, standardless PIXE analysis of thick biomineral samples together with proper additional procedures can provide relevant information in biomedical research.


Modeling of dispersion in a polymeric chromatographic monolith
Koku, Harun; Schure, Mark R.; Lenhoff, Abraham M. (Elsevier BV, 2012-05-11)
Dispersion in a commercial polymeric monolith was simulated on a sample geometry obtained by direct imaging using high-resolution electron microscopy. A parallelized random walk algorithm, implemented using a velocity field obtained previously by the lattice-Boltzmann method, was used to model mass transfer. Both point particles and probes of finite size were studied. Dispersion simulations with point particles using periodic boundaries resulted in plate heights that varied almost linearly with flow rate, a...
Relation of structure to performance characteristics of monolithic and perfusive stationary phases
Trilisky, Egor I.; Koku, Harun; Czymmek, Kirk J.; Lenhoff, Abraham M. (Elsevier BV, 2009-09-04)
Commercially available polymer-based monolithic and perfusive stationary phases were evaluated for their applicability in chromatography of biologics. Information on bed geometry, including that from electron microscopy (EM), was used to interpret and predict accessible volumes, binding capacities, and pressure drops. For preparative purification of biologics up to at least 7 nm in diameter, monoliths and perfusive resins are inferior to conventional stationary phases due to their low binding capacities (20...
Immobilization studies utilizing solid supports for the determination of fructose by dansylaminophenyl boronic acid (DAPB acid) and chromate by diphenylcarbazide (DPC)
Bulut, Mukadder; Volkan, Mürvet; Department of Chemistry (2006)
Immobilization of fluorescent chemosensors and chromogenic reagents on solid supports for developing optical sensors result in improved analytical performance characteristics such as continuous read-out, increased sensitivity, lower reagent consumption and possibility of using the sensor in solvents where the free molecule displays low solubility. The aim of this study is to immobilize dansylaminophenyl boronic acid (DAPB acid) and diphenylcarbazide (DPC) into various solid supports for the determination of...
Modeling of flow in a polymeric chromatographic monolith
Koku, Harun; Czymmek, Kirk J.; Schure, Mark R.; Lenhoff, Abraham M. (Elsevier BV, 2011-06-03)
The flow behavior of a commercial polymeric monolith was investigated by direct numerical simulations employing the lattice-Boltzmann (LB) methodology. An explicit structural representation of the monolith was obtained by serial sectioning of a portion of the monolith and imaging by scanning electron microscopy. After image processing, the three-dimensional structure of a sample block with dimensions of 17.8 mu m x 17.8 mu m x 14.1 mu m was obtained, with uniform 18.5 nm voxel size. Flow was simulated on th...
Separation and quantitation of some platinum group metals by rp-hplc
Alshana, Usama; Aygün, Rüveyde Sezer; Department of Chemistry (2004)
In this study, a reversed-phase high performance liquid chromatography (RP-HPLC) method has been developed to separate and determine Pt and Pd after formation of their chelates with N,N-diethyl-N'-benzoylthiourea (DEBT). With the aim of reducing the number of steps in treating the samples, the method developed does not require the elimination of excess chelating reagent before the analysis of metal chelates. The different physical and chemical parameters affecting separation were examined in details. The wh...
Citation Formats
E. Preoteasa et al., “Standardless PIXE analysis of thick biomineral structures,” ANALYTICAL AND BIOANALYTICAL CHEMISTRY, pp. 825–841, 2004, Accessed: 00, 2020. [Online]. Available: