Collisional damping of giant resonances

Download
2000
Yıldırım, Serbülent

Suggestions

Collisional effects in isovector response function of nuclear matter at finite temperature
Bozkurt, Kutsal; Yılmaz, Osman; Ayık, Şakir; Department of Physics (2003)
Magnetohydrodynamic Flow Imaging Using Spin-Echo Pulse Sequence
Eroğlu, Hasan Hüseyin; SADIGHI, MEHDI; Eyüboğlu, Behçet Murat (2019-04-24)
In this study, magnetohydrodynamic (MHD) flow of conductive liquids due to injection of electrical current during magnetic resonance imaging (MRI) is investigated. A spin-echo based MRI pulse sequence is proposed to image the MHD flow. Magnetic resonance (MR) phase effects of the MHD flow is related to the MRI pulse parameters and injected current. Average velocity distributions of the MHD flow are reconstructed using the MR phase images. The method is validated by numerical simulations. The reconstruction ...
Collisional damping of giant resonances with an optimized finite-range effective interaction
Yildirim, S; Tarikci, A (2002-10-01)
Collisional damping widths of isoscalar giant monopole, isovector giant dipole and isoscalar giant quadrupole excitations for Sn-120 and Pb-208 at zero and finite temperatures are calculated within Thomas-Fermi approximation by employing a recently proposed modified Skyrme force and the results are compared with previous works.
Measurement of magnetic field generated by nonuniform AC current density using magnetic resonance.
Müftüler, Lütfi Tugan; İder, Yusuf Ziya; Department of Electrical and Electronics Engineering (1996)
Magnetic Resonance Signal Analysis in Inhomogenous Magnetic Fields
Arpinar, V. E.; Eyüboğlu, Behçet Murat (2009-09-12)
Nuclear Magnetic Resonance (NMR) systems with inhomogenous main magnetic fields have been satisfactorily used to explore material properties. So that, imaging of biological tissues using Magnetic Resonance Imaging (MRI) systems with inhomogenous main magnetic fields could be explored. In this work, magnetic resonance (MR) signal deviation due to inhomogeneity in the main magnetic field of a MRI system is investigated. This analysis gives the understanding of the effect of inhomogeneity in magnetic field to ...
Citation Formats
S. Yıldırım, “Collisional damping of giant resonances,” Ph.D. - Doctoral Program, Middle East Technical University, 2000.