Twenty years of computational methods for harmonic response analysis of non-proportionally damped systems

2002-02-07
Twenty years ago, accurate harmonic response analysis of non-proportionally damped systems required the solution of a complex eigenvalue problem and modal superposition of complex modes. In order to avoid the computational effort of complex modal superposition, several approximate methods were proposed and accuracy of each such technique was studied extensively. In the past twenty years, while the search for appropriate approximate techniques for each different application continued, more rigorous methods were also developed. In this paper, the progress in computational methods for harmonic response analysis of nonproportionally damped systems is reviewed, emphasis being placed on a powerful technique which was first extended to structural modification analysis and then to harmonic response analysis of systems with non-linearities.

Suggestions

Continuous-time nonlinear estimation filters using UKF-aided gaussian sum representations
Gökçe, Murat; Kuzuoğlu, Mustafa; Department of Electrical and Electronics Engineering (2014)
A nonlinear filtering method is developed for continuous-time nonlinear systems with observations/measurements carried out in discrete-time by means of UKFaided Gaussian sum representations. The time evolution of the probability density function (pdf) of the state variables (or the a priori pdf) is approximated by solving the Fokker-Planck equation numerically using Euler’s method. At every Euler step, the values of the a priori pdf are evaluated at deterministic sample points. These values are used with Ga...
Dynamic response of antisymmetric cross-ply laminated composite beams with arbitrary boundary conditions
Khdeir, AA (1996-01-01)
An analytical solution of the classical, first- and third-order laminate beam theories is developed to study the transient response of antisymmetric cross-ply laminated beams with generalized boundary conditions and for arbitrary loadings. A general modal approach, utilizing the state form of the equations of motion and their biorthogonal eigenfunctions, is presented to solve the equations of motion of beams with arbitrary boundary conditions. The results obtained using the higher-order theory of Reddy (HOB...
Exact solutions of the supersmmetric quantum mechanics
Faridfathi, Gholamreza; Sever, Ramazan; Department of Physics (2005)
The supersymmetric solutions of PT-/non-PT symmetric and Hermitian/non-Hermitian forms of quantum systems are obtained by solving the SchrÄodinger equation with the deformed Morse, Hulthœen, PÄoschl-Teller, Hyperbolic Kratzer-like, Screened Coulomb, and Exponential-Cosine Screened Coulomb (ECSC) potentials. The Hamiltonian hi- erarchy method is used to get the real energy eigenvalues and corresponding wave functions.
Fully computable convergence analysis of discontinous Galerkin finite element approximation with an arbitrary number of levels of hanging nodes
Özışık, Sevtap; Kaya Merdan, Songül; Riviere, Beatrice M.; Department of Mathematics (2012)
In this thesis, we analyze an adaptive discontinuous finite element method for symmetric second order linear elliptic operators. Moreover, we obtain a fully computable convergence analysis on the broken energy seminorm in first order symmetric interior penalty discontin- uous Galerkin finite element approximations of this problem. The method is formulated on nonconforming meshes made of triangular elements with first order polynomial in two di- mension. We use an estimator which is completely free of unknow...
Boundary value problems for higher order linear impulsive differential equations
Uğur, Ömür; Akhmet, Marat (2006-07-01)
In this paper higher order linear impulsive differential equations with fixed moments of impulses subject to linear boundary conditions are studied. Green's formula is defined for piecewise differentiable functions. Properties of Green's functions for higher order impulsive boundary value problems are introduced. An appropriate example of the Green's function for a boundary value problem is provided. Furthermore, eigenvalue problems and basic properties of eigensolutions are considered. (c) 2006 Elsevier In...
Citation Formats
H. N. Özgüven, “Twenty years of computational methods for harmonic response analysis of non-proportionally damped systems,” 2002, vol. 4753, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53565.