Photoproduction of hydrogen by Rhodobacter sphaeroides OU001

1996-06-28
Arik, T
Gündüz, Ufuk
Yucel, M
Turker, L
Sediroglu, V
Eroğlu, İnci
A photobioreactor has been designed and constructed for hydrogen production by Rhodobacter. sphaeroides O.U.001 (DSM 5864). Two phases have been distinguished upon illumination at argon atmosphere, the growth phase and the hyrogen production phase. Anaerobic growth was observed at a wide range of pH (6-9) and temperature (25-40 degrees C) only under illumination. Rhodobacter sphaeroides O.U.001 photoproduced hydrogen after a certain limiting cell concentration has been reached, however, high cell mass caused a decrease in hydrogen evolution rate. Therefore an optimum cell concentration range has been found (1.6-1.8 mg dry wt/ml). Hydrogen photoproduction rate was higher at 31 degrees C than at 36 degrees C. High purity hydrogen gas has been produced which was composed of 99 % of hydrogen and 1 % of carbondioxide on argon free basis.

Suggestions

Photoelectrochemical hydrogen production by Halobacterium halobium
Sediroglu, V; Yucel, M; Gunduz, L; Turker, L; Aydemir, A; Eroğlu, İnci (1996-06-28)
A bio-photoelectrochemical reactor has been designed and constructed in order to understand the biocatalytic effect of Halobacterium halobium on the electrochemical production of hydrogen in salt solution. Photoelectrochemical studies were carried out at 25 degrees C in 20 % NaCl solution containing 0.68 mu M bacteriorhodopsin. The reactor was illuminated by a 1000 W projector lamp which was 50 cm apart.
Photoproduction of hydrogen by Rhodobacter capsulatus from thermophilic fermentation effluent
Uyar, Basar; Schumacher, Matthias; Gebicki, Jakub; Modigell, Michael (2009-08-01)
Rhodobacter capsulatus was used for the phototrophic hydrogen production on effluent solution derived from the thermophilic fermentation of Miscanthus hydrolysate by Thermotoga neapolitana. Pretreatments such as centrifugation, dilution, buffer addition, pH adjustment and sterilization were suggested for the effluent before being fed to the photofermentation. Batch-wise experiments showed that R. capsulatus grows and produces hydrogen on the pretreated effluent solution. Moreover, it was found that the hydr...
Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides OU 001
Yetis, M; Gündüz, Ufuk; Eroglu, I; Yucel, M; Turker, L (2000-11-01)
Pretreated sugar refinery wastewater (SRWW) was used for the production of hydrogen by Rhodobacter sphaeroides O.U.001 in a 0.4 1 column photobioreactor. Hydrogen was produced at a rate of 0.001 1 hydrogen/h/l culture in 20% dilution of SRWW. To adjust the carbon concentration to 70 mM and nitrogen concentration to 2 mM, sucrose or l-malic acid was added as carbon source and sodium glutamate was added as nitrogen source to the 20% dilution of SRWW. By these adjustments, hydrogen production rate was increase...
Photofermentative hydrogen production from molasses in tubular photobioreactor with pH control
Oflaz, Fatma Betül; Koku, Harun; Department of Chemical Engineering (2019)
Biological hydrogen production has the potential to supply hydrogen from various wastes as feedstock and operation under ambient conditions. In order to obtain cost effective production, photobioreactors (PBRs) that can operate for long durations while utilizing waste are necessary. Two primary issues limiting the duration are decrease in pH and the non-optimal C/N ratio. The main aim of this study was to construct and operate a pH control system for a pilot scale photobioreactor (20 L) to achieve prolonged...
Biohydrogen production from barley straw hydrolysate through sequential dark and photofermentation
Ozgur, Ebru; Peksel, Begum (Elsevier BV, 2013-08-01)
Biohydrogen production by sequential operation of dark and photo-fermentation processes is a promising method to produce hydrogen from renewable resources, in a sustainable way. In this study, barley straw hydrolysate (BSEI) dark fermenter effluent (DFE) was used as the biomass feedstock for biohydrogen production through photofermentation. Two different dark fermentation effluents were obtained by performing fermentation with or without addition of yeast extract (YE), using hyperthermophilic dark fermentat...
Citation Formats
T. Arik, U. Gündüz, M. Yucel, L. Turker, V. Sediroglu, and İ. Eroğlu, “Photoproduction of hydrogen by Rhodobacter sphaeroides OU001,” 1996, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53573.