Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design and Optimization of Two-Dimensional Nano-Arrays for Directive Radiation
Date
2019-02-01
Author
Altinoklu, Askin
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
109
views
0
downloads
Cite This
We consider design, optimization, and computational analysis of nano-arrays involving two-dimensional arrangements of nanoparticles. Similar to their counterparts used at the lower frequencies, nanoantennas can be arranged periodically to achieve directive and/or controllable radiation patterns at optical frequencies. While nanoantenna geometries are usually simple due to restrictions in nanoscale fabrications, their robust analysis still requires accurate simulation tools to model strong plasmonic interactions between particles. We use a full-wave optimization environment based on heuristic algorithms and surface integral equations to optimize two-dimensional nano-arrays and to shape their radiation patterns for diverse nano-optical applications.
URI
https://hdl.handle.net/11511/53660
Journal
APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Design and Optimization of Two-Dimensional Nano-Arrays for Beam Steering
Altinoklu, Askin; Rasoolzadeh, N.; Ergül, Özgür Salih (2018-03-29)
We consider design and optimization of nanoarrays involving two-dimensional arrangements of nanoparticles. Similar to their counterparts used at the lower frequencies, nanoantennas can be arranged periodically to achieve directive and/or controllable radiation patterns at optical frequencies. While nanoantenna geometries are usually simple due to restrictions in nanoscale fabrications, their robust analysis still requires accurate simulation tools that model strong plasmonic interactions between particles. ...
Design and optimization of nanooptical couplers based on photonic crystals involving dielectric rods of varying lengths
Yazar, Şirin; Ergül, Özgür Salih (2022-1-01)
This study presents design and optimization of compact and efficient nanooptical couplers involving photonic crystals. Nanooptical couplers that have single and double input ports are designed to obtain efficient transmission of electromagnetic waves in desired directions. In addition, these nanooptical couplers are cascaded by adding one after another to realize electromagnetic transmission systems. In the design and optimization of all these nanooptical couplers, the multilevel fast multipole algorithm, w...
Design and analysis of nano-optical networks consisting of nanowires and optimized couplers
Altinoklu, Askin; Karaova, Gokhan; Ergül, Özgür Salih (2019-09-01)
We present computational design and investigation of nano-optical systems involving nanowires and well-designed nano-couplers to effectively transmit electromagnetic power in nanometer scales. Different nano-couplers, which consist of optimal arrangements of nano-cubes, are carefully designed by considering various scenarios, e.g., nanowire lines with sharp corners and junctions. An efficient combination of genetic algorithms and the multilevel fast multipole algorithm is used to find suitable configuration...
Design and performance analysis of a pump-turbine system using computational fluid dynamics
Yıldız, Mehmet; Albayrak, Kahraman; Çelebioğlu, Kutay; Department of Mechanical Engineering (2011)
In this thesis, a parametric methodology is investigated to design a Pump-Turbine system using Computational Fluid Dynamics ( CFD ). The parts of Pump-Turbine are created parametrically according to the experience curves and theoretical design methods. Then, these parts are modified to obtain 500 kW turbine working as a pump with 28.15 meters head. The final design of Pump-Turbine parts are obtained by adjusting parameters according to the results of the CFD simulations. The designed parts of the Pump-Turbi...
Design and implementation of low leakage MEMS microvalves
Yıldırım, Ender; Külah, Haluk; Arıkan, Mehmet Ali Sahir; Department of Mechanical Engineering (2011)
This thesis presents analysis, design, implementation, and testing of electrostatically actuated MEMS microvalves. The microvalves are specifically designed for lab-on-a-chip applications to achieve leakage ratios below 0.1 at pressure levels in the order of 101 kPa. For this purpose, two different microvalves are presented in the study. In the proposed designs, electrostatic actuation scheme is utilized to operate the microvalves in normally open and normally closed modes. Characterization of normally open...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Altinoklu and Ö. S. Ergül, “Design and Optimization of Two-Dimensional Nano-Arrays for Directive Radiation,”
APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL
, pp. 347–351, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53660.