Protein secondary structure prediction of STZ-induced diabetic and antioxidant treated diabetic rat kidney microsomal membranes by neural networks

Severcan, M
Gorgulu, G
Severcan, Feride


Protein domain networks: analysis of attack tolerance under varied circumstances
Oğuz, Şaziye Deniz; Öktem, Hakan; Department of Scientific Computing (2010)
Recently, there has been much interest in the resilience of complex networks to random failures and intentional attacks. The study of the network robustness is particularly important by several occasions. In one hand a higher degree of robustness to errors and attacks may be desired for maintaining the information flow in communication networks under attacks. On the other hand planning a very limited attack aimed at fragmenting a network by removal of minimum number of the most important nodes might have si...
Protein-based materials in load-bearing tissue-engineering applications
Sayin, Esen; Baran, Erkan Turker; Hasırcı, Vasıf Nejat (2014-01-01)
Proteins such as collagen and elastin are robust molecules that constitute nanocomponents in the hierarchically organized ultrastructures of bone and tendon as well as in some of the soft tissues that have load-bearing functions. In the present paper, the macromolecular structure and function of the proteins are reviewed and the potential of mammalian and non-mammalian proteins in the engineering of load-bearing tissue substitutes are discussed. Chimeric proteins have become an important structural biomater...
Protein-Protein Interactions in Live Cells: Reinventing the Wheel
Son, Çağdaş Devrim (2018-12-13)
G protein-coupled receptors (GPCRs) are membrane proteins that mediate physiologicalresponse to a diverse array of stimuli. In humans, they mediate the action of hundreds ofpeptide hormones, sensory stimuli, odorants, neurotransmitters, and chemokines. GPCRs alsoare targets for ~40% of all currently marketed pharmaceuticals. These receptors traditionallybeen thought to act as monomeric units. However, recent evidence suggests that GPCRs mayform dimers as part of their normal trafficking and function. While ...
Protein adsorption and transport in dextran-modified ion-exchange media. I: Adsorption
Bowes, Brian D.; Koku, Harun; Czymmek, Kirk J.; Lenhoff, Abraham M. (Elsevier BV, 2009-11-06)
Adsorption behavior is compared on a traditional agarose-based ion-exchange resin and on two dextran-modified resins, using three proteins to examine the effect of protein size. The latter resins typically exhibit higher static capacities at low ionic strengths and electron microscopy provides direct visual evidence supporting the view that the higher static capacities are due to the larger available binding volume afforded by the dextran. However, isocratic retention experiments reveal that the larger prot...
Protein kinase D2 silencing reduced motility of doxorubicin-resistant MCF7 cells
Alpsoy, Aktan; Gündüz, Ufuk (2015-06-01)
Success of chemotherapy is generally impaired by multidrug resistance, intrinsic resistance, or acquired resistance to functionally and structurally irrelevant drugs. Multidrug resistance emerges via distinct mechanisms: increased drug export, decreased drug internalization, dysfunctional apoptotic machinery, increased DNA damage repair, altered cell cycle regulation, and increased drug detoxification. Several reports demonstrated that multidrug resistance is a multifaceted problem such that multidrug resis...
Citation Formats
M. Severcan, G. Gorgulu, and F. Severcan, “Protein secondary structure prediction of STZ-induced diabetic and antioxidant treated diabetic rat kidney microsomal membranes by neural networks,” 2005, vol. 88, Accessed: 00, 2020. [Online]. Available: