Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Hyperbox model for fuzzy rule evaluation in neural networks
Date
1998-04-23
Author
Durmaz, D
Alpaslan, Ferda Nur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
A model that is suggested for pattern classification by using fuzzy sets in a neural network is modified to include fuzzy rule evaluation, The proposed model is;aimed to be used for medical diagnosis applications. In this paper, two variations of the original model [2] are described. The drawbacks and advantages of both models are discussed along with the implementation results. We used the maximum hyperbox size parameter (theta) in the first model but not in the second one. The effects of theta and the defuzzification methods are also examined only far the first model. The related learning algorithms, which adjust the minimum and the maximum points for hyperboxes that represent the fuzzy ranges, are given with the necessary changes.
URI
https://hdl.handle.net/11511/54196
Collections
Department of Computer Engineering, Conference / Seminar