Optimizations of EFIE and MFIE Combinations in Hybrid Formulations of Conducting Bodies

2015-09-11
Karaosmanoglu, B.
Onol, C.
Ergül, Özgür Salih
We present generalized hybrid surface integral-equation formulations for three-dimensional conductors with arbitrary shapes. The proposed formulations are based on flexible applications of the electric-field integral equation and the magnetic field integral equation with varying combinations on different regions of the given objects. As a proof of concept, we demonstrate hybrid formulations using two-region maps and their parametric analysis. We show that hybrid formulations may enable optimal solutions in terms of accuracy and efficiency, in comparison to the conventional CFIE implementations with fixed combination parameters.

Suggestions

Analysis of double-negative materials with surface integral equations and the multilevel fast multipole algorithm
Ergül, Özgür Salih (2011-08-13)
We present a fast and accurate analysis of double-negative materials (DNMs) with surface integral equations and the multilevel fast multipole algorithm (MLFMA). DNMs are commonly used as simplified models of metamaterials at resonance frequencies and are suitable to be formulated with surface integral equations. However, realistic metamaterials and their models are usually very large with respect to wavelength and their accurate solutions require fast algorithms, such as MLFMA. We consider iterative solutio...
Linear-linear basis functions for MLFMA solutions of magnetic-field and combined-field integral equations
Ergül, Özgür Salih (2007-04-01)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving closed conductors. We consider the solutions of relatively large scattering problems by employing the multilevel fast multipole algorithm. Accuracy problems of MFIE and CFIE arising from their implementations with the conventional Rao-Wilton-Glisson (RWG) basis functions can...
A new differential formulation of acoustic scattering by rotationally symmetrical penetrable scatterers
Günalp, Nilgün; TOSUN, H (1994-07-01)
A new differential formulation is presented for acoustic wave scattering from rotationally symmetric penetrable bodies. The numerical implementation of this formulation is fairly simple, and comprises basically the construction of the state-transition matrix of a system of differential equations and the solution of a matrix equation. The validity and the accuracy of the numerical scheme are tested considering objects of known scattering behavior. Other numerical applications are also presented to demonstrat...
Full-Wave Computational Analysis of Optical Chiral Metamaterials
Guler, Sadri; Solak, Birol; Gür, Uğur Meriç; Ergül, Özgür Salih (2017-09-27)
We present computational analysis of optical chiral metamaterials that consist of helical metallic elements. At optical frequencies, metals are modeled as penetrable objects with plasmonic properties. A rigorous implementation based on boundary element methods and the multilevel fast multipole algorithm is used for efficient and accurate analysis of three-dimensional structures. Numerical results demonstrate interesting polarization-rotating characteristics of such arrays with helical elements, as well as t...
The use of curl-conforming basis functions for the magnetic-field integral equation
Ergül, Özgür Salih (2006-07-01)
Divergence-conforming Rao-Wilton-Glisson (RWG) functions are commonly used in integral-equation formulations to model the surface current distributions on planar triangulations. In this paper, a novel implementation of the magnetic-field integral equation (MFIE) employing the curl-conforming (n) over tilde x RWG basis and testing functions is introduced for improved current modelling. Implementation details are outlined in the contexts of the method of moments, the fast multipole method, and the multilevel ...
Citation Formats
B. Karaosmanoglu, C. Onol, and Ö. S. Ergül, “Optimizations of EFIE and MFIE Combinations in Hybrid Formulations of Conducting Bodies,” 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54373.