Sulbactam-cefoperazone polyhydroxybutyrate-co-hydroxyvalerate (PHBV) local antibiotic delivery system: In vivo effectiveness and biocompatibility in the treatment of implant-related experimental osteomyelitis

1999-09-15
Yagmurlu, MF
Korkusuz, Feza
Gursel, I
Korkusuz, P
Ors, U
Hasırcı, Vasıf Nejat
In this study, a novel antibiotic carrier system for use in the treatment of implant-related and chronic osteomyelitis was developed. Sulbactam-cefoperazone was introduced to rods of polyhydroxybutyrate-co-hydroxyvalerate (22 mol % HV, w/w), a member of a family of microbial-origin polymer that is biodegradable, biocompatible, and osteoconductive due to its piezoelectric property. The antibiotic-loaded carrier was implanted into the infection site that was induced by Staphylococcus aureus inoculation into the rabbit tibia. The effectiveness of this was assessed macroscopically, radiographically, bacteriologically, and histopathologically. Findings of infection subsided on day 15 and almost complete remission was observed on day 30. The control side that contained antibiotic-free reds, however, worsened. These findings prompted us to conclude that the novel biodegradable antibiotic carrier developed in the present study seems to be a promising candidate for use in the treatment of severe bone infection. (C) 1999 John Wiley & Sons, Inc.
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH

Suggestions

In vivo response to biodegradable controlled antibiotic release systems
Korkusuz, F; Korkusuz, P; Eksioglu, F; Gursel, I; Hasırcı, Vasıf Nejat (2001-05-01)
In this study, the major goal was to evaluate in vitro and in vivo findings by macroscopy, radiology, and histology to determine the effectiveness of therapy of experimental implant-related osteomyelitis with antibiotic carrier rods constructed of microbial polyesters. The polymers used were poly(3-hydroxybutyrate-co-4-hydroxyvalerate) [P(3HB-co-4-HB)] and poly(3-hydroxybutyrate-co-3-hydroxy-valerate) [P(3-HB-co-3-HV)]. Both the Sulperazone(R) and the Duocid(R)-P(3-HB-co-4-HB) rods with a drug to polymer ra...
In vivo application of biodegradable controlled antibiotic release systems for the treatment of implant-related osteomyelitis
Gursel, I; Korkusuz, F; Turesin, F; Alaeddinoglu, NG; Hasırcı, Vasıf Nejat (2001-01-01)
In this study the construction and in vivo testing of antibiotic-loaded polyhydroxyalkanoate rods were planned for use in the treatment of implant-related osteomyelitis. The rods were constructed of poly(3-hydroxybutyrare-co-3-hydroxyvalerate) and poly(3hydroxybutyrate-co-4-hydroxybutyrate), carrying 50% (w/w) Sulperazone(R) or Duocid(R). They were implanted in rabbit tibia in which implant-related osteomyelitis (IRO) had been induced with Staphylococcus aureus. The effectiveness of the antibiotics in the t...
Vancomycin release from poly(D,L-lactide) and poly(lactide-co-glycolide) disks
Ozalp, Y; Ozdemir, N; Hasırcı, Vasıf Nejat (2002-01-01)
A biodegradable and biocompatible polymeric system was developed for the controlled release of vancomycin for the treatment of brain abscesses. Poly(D,L-lactic acid) (PLA) and its copolymers poly( lactide-co-glycolide) PLGA 90: 10 and PLGA 70: 30, were prepared. Polymer disks containing vancomycin (VN) were prepared by solvent casting from methylene chloride solutions. Degradation of the polymer disk was studied by scanning electron microscopy, NMR and GPC. SEM revealed an increasing degree of degradation w...
Treatment of implant-related methicillin-resistant Staphylococcus aureus osteomyelitis with vancomycin-loaded VK100 silicone cement: An experimental study in rats
Neyisci, Cagri; Erdem, Yusuf; Bilekli, Ahmet Burak; Demiralp, Bahtiyar; Kose, Ozkan; Bek, Dogan; Korkusuz, Feza; Kankilic, Berna (SAGE Publications, 2018-1)
Introduction: The purpose of this present study is to investigate the efficacy of vancomycin-loaded VK100 silicone cement drug delivery system in the treatment of implant-related methicillin-resistant Staphylococcus aureus (MRSA) osteomyelitis in rats. Materials and Methods: Thirty-six adult (18-20 weeks old) female Sprague-Dawley rats were included in the study. All rats underwent experimental osteomyelitis surgery via injecting 100 mu L bacterial suspension of MRSA into the medullary canal. After a 2-week...
Development and analysis of controlled release polymeric rods containing vancomycin
Tağıt, Oya; Hasırcı, Vasıf Nejat; Department of Biotechnology (2005)
Antibiotic use is a vital method for the treatment of most diseases involving bacterial infections. Unfortunately, in certain cases these agents are not effective in treatments against diseases for either some limitation in antibiotic usage because of the side effects or some distribution problems caused by physiological or pathological barriers in the body. Such problems are thought to be minimized by development of controlled release systems which involve implantation of antibiotic loaded polymeric system...
Citation Formats
M. Yagmurlu, F. Korkusuz, I. Gursel, P. Korkusuz, U. Ors, and V. N. Hasırcı, “Sulbactam-cefoperazone polyhydroxybutyrate-co-hydroxyvalerate (PHBV) local antibiotic delivery system: In vivo effectiveness and biocompatibility in the treatment of implant-related experimental osteomyelitis,” JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, pp. 494–503, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54377.