Evidence for spring loaded inverted pendulum running in a hexapod robot

2001-01-01
ALTENDORFER, R
Saranlı, Uluç
KOMSUOGLU, H
KODITSCHEK, D
BROWN, HB
BUEHLER, M
MOORE, N
MCMORDIE, D
FULL, R
This paper presents the first evidence that the Spring Loaded Inverted Pendulum (SLIP) may be "anchored" in our recently designed compliant leg hexapod robot, RHex. Experimentally measured RHex center of mass trajectories axe fit to the SLIP model and an analysis of the fitting error is performed. The fitting results are corroborated by numerical simulations. The "anchoring" of SLIP dynamics in RHex offers exciting possibilities for hierarchical control of hexapod robots.
EXPERIMENTAL ROBOTICS VII

Suggestions

Evidence for Spring Loaded Inverted Pendulum Running in a Hexapod Robot
Altendorfer, Richard; Saranlı, Uluç; Komsuoğlu, Haldun; Koditschek, Daniel E; Brown, H Benjamin; Buehler, Martin; Moore, Ned; McMordie, Dave; Full, Robert (2002-01-25)
This paper presents the first evidence that the Spring Loaded Inverted Pendulum (SLIP) may be “anchored” in our recently designed compliant leg hexapod robot, RHex. Experimentally measured RHex center of mass trajectories are fit to the SLIP model and an analysis of the fitting error is performed. The fitting results are corroborated by numerical simulations. The “anchoring” of SLIP dynamics in RHex offers exciting possibilities for hierarchical control of hexapod robots.
Analysis and control of a body-attached spring-mass runner based on central pivot point approach
Karagoz, O. Kaan; Sever, Izel; Saranlı, Uluç; Ankaralı, Mustafa Mert (2020-07-01)
© 2020 IEEE.The Spring-Loaded Inverted Pendulum (SLIP) template and its extensions have long been used as benchmark models for analyzing the dynamics of legged systems in biology and robotics. The fundamental SLIP model is composed of single point mass attached to the ground (during stance phase) via an ideal lossless spring. Many researchers introduced various extensions to this fundamental model, such as damping torque actuation, to handle critical physical phenomena that are unavoidable in real systems. ...
An Analytical Solution to the Stance Dynamics of Passive Spring-Loaded Inverted Pendulum with Damping
ANKARALI, M. M.; Arslan, O.; Saranlı, Uluç (2009-09-11)
The Spring-Loaded Inverted Pendulum (SLIP) model has been established both as a very accurate descriptive tool as well as a good basis for the design and control of running robots. In particular, approximate analytic solutions to the otherwise nonintegrable dynamics of this model provide principled ways in which gait controllers can be built, yielding invaluable insight into their stability properties. However, most existing work on the SLIP model completely disregards the effects of damping, which often ca...
MODELING THE COMPLIANCE OF A VARIABLE STIFFNESS C-SHAPED LEG USING CASTIGLIANO'S THEOREM
Ünlü Aydın, Yücel; Yazıcıoğlu, Yiğit (2010-08-18)
This paper discusses the application of Castigliano's Theorem to a half circular beam intended for use as a shaped, tunable, passively compliant robot leg. We present closed-form equations characterizing the deflection behavior of the beam (whose compliance properties vary along the leg) under appropriate loads. We compare the accuracy of this analytical representation to that of a Pseudo Rigid Body (PRB) approximation in predicting the data obtained by measuring the deflection of a physical half-circular b...
Exact solution of rotating FGM shaft problem in the elastoplastic state of stress
Akis, Tolga; Eraslan, Ahmet Nedim (Springer Science and Business Media LLC, 2007-10-01)
Plane strain analytical solutions to estimate purely elastic, partially plastic and fully plastic deformation behavior of rotating functionally graded (FGM) hollow shafts are presented. The modulus of elasticity of the shaft material is assumed to vary nonlinearly in the radial direction. Tresca's yield criterion and its associated flow rule are used to formulate three different plastic regions for an ideal plastic material. By considerina different material compositions as well as a wide range of bore radi...
Citation Formats
R. ALTENDORFER et al., “Evidence for spring loaded inverted pendulum running in a hexapod robot,” EXPERIMENTAL ROBOTICS VII, pp. 291–302, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54505.