Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Removing Grating Lobes in Sparse Sensor Arrays with a Nonlinear Approach
Date
2015-05-19
Author
Epcacan, Erdal
Çiloğlu, Tolga
Candan, Çağatay
Mehmetcik, Erdal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Two of the most important criteria for a sensor array beam-pattern are beamwidth and side-lobe level. A narrower beamwidth means a better angular resolution and well separation of close sources. The beamwidth of a sensor array is directly proportional to array aperture, the beamwidth gets narrower as array aperture increases. However, increase in array aperture means increase in number of used sensors due to Nyquist spatial rate and this means increase in cost and computational load. Therefore, sparse arrays which violate Nyquist spatial rate are used. To cancel grating lobes occurred due to violation of Nyquist rate a weight optimization is implemented. In this paper, an approach which does not need weight optimization for grating lobe cancellation is presented. This method is inspired from nonlinear apodization (windowing) method. The necessary information to cancel grating lobes is obtained from a sub-array contained in the sparse array and this sub-array obeys Nyquist spatial rate.
Subject Keywords
Sparse array design
,
Nonlinear apodization
URI
https://hdl.handle.net/11511/54514
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar