STATE DEPENDENT RICCATI EQUATION CONTROL OF COLLINEAR SPINNING THREE-CRAFT COULOMB FORMATIONS

2015-01-15
Gomroki, Mohammad Mehdi
Tekinalp, Ozan
The relative position control of a collinear spinning three-spacecraft Coulomb formation with set charges is addressed. Such a formation is assumed to be in deep space without relevant gravitational forces present. The nonlinear control is realized through state dependent Riccati equation (SDRE) control method. Relative position control is used to keep a three-craft Coulomb formation about a desired equilibrium collinear configuration. The equations of motion of the formation are properly manipulated to obtain a suitable form for SDRE control. The state-dependent coefficient (SDC) form is then formulated to include the non-linearities in the relative dynamics. Numerical simulations illustrate effectiveness of the controllers.

Suggestions

State Dependent Riccati Equation Control of Spinning Three Craft Coulomb Formations
Tekinalp, Ozan (null; 2015-01-12)
The relative position control of a collinear spinning three-spacecraft Coulomb formation with set charges is addressed. Such a formation is assumed to be in deep space without relevant gravitational forces present. The nonlinear control is realized through state dependent Riccati equation (SDRE) control method. Relative position control is used to keep a three-craft Coulomb formation about a desired equilibrium collinear configuration. The equations of motion of the formation are properly manipulated to obt...
DIRECTIONAL DEPENDENCE OF EXTRAORDINARY INFRARED OSCILLATOR PARAMETERS OF TLGAS2-TYPE LAYER CRYSTALS
Hasanlı, Nızamı; TAGIROV, VI (Elsevier BV, 1983-01-01)
The directional dispersion of IR-active modes of TlGaS2, TlGaSe2 and TlInS2 layersingle crystals has been investigated, depending on the angle between the phonon wave vector q and the optical c-axis. Owing to the possibility of preparation crystals with various orientations of reflecting surfaces with respect to the optical c-axis, it was of interest to check the applicability of the generalized Born and Huang theory of long-wave optical vibrations in uniaxial crystals to TlGaS2-type layer crystals.
Radiative decays of the heavy flavored baryons in light cone QCD sum rules
Alıyev, Tahmasıb; Özpineci, Altuğ (2009-03-01)
The transition magnetic dipole and electric quadrupole moments of the radiative decays of the sextet heavy flavored spin 3/2 to the heavy spin 1/2 baryons are calculated within the light cone QCD sum rules approach. Using the obtained results, the decay rate for these transitions are also computed and compared with the existing predictions of the other approaches.
Spin force and torque in non-relativistic Dirac oscillator on a sphere
Shikakhwa, M. S. (2018-03-30)
The spin force operator on a non-relativistic Dirac oscillator (in the non-relativistic limit the Dirac oscillator is a spin one-half 3D harmonic oscillator with strong spin-orbit interaction) is derived using the Heisenberg equations of motion and is seen to be formally similar to the force by the electromagnetic field on a moving charged particle. When confined to a sphere of radius R, it is shown that the Hamiltonian of this non-relativistic oscillator can be expressed as a mere kinetic energy operator w...
ELECTRON POLARIZATION IN A PARABOLIC QUANTUM-WELL WITH UNIFORM ELECTRIC-FIELD
ILAIWI, KF; Tomak, Mehmet (1991-01-01)
The polarization of a quantum electron confined in a parabolic quantum well in the presence of a uniform electric field is calculated numerically. We find positive polarization for both ground and the first excited states.
Citation Formats
M. M. Gomroki and O. Tekinalp, “STATE DEPENDENT RICCATI EQUATION CONTROL OF COLLINEAR SPINNING THREE-CRAFT COULOMB FORMATIONS,” 2015, vol. 155, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54605.