Transfer Learning for Brain Decoding using Deep Architectures

2017-07-28
Is there a general representation of the information content of human brain, which can be extracted from the functional magnetic resonance imaging (fMRI) data? Is it possible to learn this representation automatically from big data sets by unsupervised learning methods? Is it possible to transfer this representation to learn and decode a set of cognitive states in other fMRI data sets? This study addresses partial answers to the above questions by using transfer learning in deep architectures. First, a hierarchical representation for fMRI data is learned from a large data set in Human Connectome Project (HCP) by a 3-layered stacked denoising autoencoder (SDAE). Then, the learned representations are used to train and recognize the cognitive states recorded by a relatively small data set of one-back repetition detection experiment. Results show that, it is possible to learn a general representation and transfer the learned representation of an fMRI data set to another dataset for brain decoding problem. The learned representation has a better discriminative power compared to the Pearson correlation features. Results also show us that deep neural networks transfer representations better than factor models commonly used in pattern recognition and neuroscience literature.

Suggestions

Mesh Learning for Object Classification using fMRI Measurements
Ekmekci, Ömer; Ozay, Mete; Oztekin, Ilke; GİLLAM, İLKE; Oztekin, Uygar (2013-09-18)
Machine learning algorithms have been widely used as reliable methods for modeling and classifying cognitive processes using functional Magnetic Resonance Imaging (fMRI) data. In this study, we aim to classify fMRI measurements recorded during an object recognition experiment. Previous studies focus on Multi Voxel Pattern Analysis (MVPA) which feeds a set of active voxels in a concatenated vector form to a machine learning algorithm to train and classify the cognitive processes. In most of the MVPA methods,...
Neural networks with piecewise constant argument and impact activation
Yılmaz, Enes; Akhmet, Marat; Department of Scientific Computing (2011)
This dissertation addresses the new models in mathematical neuroscience: artificial neural networks, which have many similarities with the structure of human brain and the functions of cells by electronic circuits. The networks have been investigated due to their extensive applications in classification of patterns, associative memories, image processing, artificial intelligence, signal processing and optimization problems. These applications depend crucially on the dynamical behaviors of the networks. In t...
Statistical disease detection with resting state functional magnetic resonance imaging
Öztürk, Ebru; İlk Dağ, Özlem; Department of Statistics (2017)
Most of the functional magnetic resonance imaging (fMRI) data are based on a particular task. The fMRI data are obtained while the subject performs a task. Yet, it's obvious that the brain is active even when the subject is not performing a task. Resting state fMRI (R-fMRI) is a comparatively new and popular technique for assessing regional interactions when a subject is not performing a task. This study focuses on classifying subjects as healthy or diseased with the diagnosis of schizophrenia by analyzing ...
Encoding Multi-Resolution Brain Networks Using Unsupervised Deep Learning
Rahnama, Arash; Alchihabi, Abdullah; Gupta, Vijay; Antsaklis, Panos J.; Yarman Vural, Fatoş Tunay (2017-10-25)
The main goal of this study is to extract a set of brain networks in multiple time-resolutions to analyze the connectivity patterns among the anatomic regions for a given cognitive task. We suggest a deep architecture which learns the natural groupings of the connectivity patterns of human brain in multiple time-resolutions. The suggested architecture is tested on task data set of Human Connectome Project (HCP) where we extract multi-resolution networks, each of which corresponds to a cognitive task. At the...
On the Entropy of Brain Anatomic Regions for Complex Problem Solving
Degirmendereli, Gonul Gunal; Newman, Sharlene D.; Yarman Vural, Fatoş Tunay (2019-01-01)
In this paper, we aim to measure the information content of brain anatomic regions using the functional magnetic resonance images (fMRI) recorded during a complex problem solving (CPS) task. We, also, analyze the brain regions, activated in different phases of the problem solving process. Previous studies have widely used machine learning approaches to examine the active anatomic regions for cognitive states of human subjects based on their fMRI data. This study proposes an information theoretic method for ...
Citation Formats
B. Velioglu and F. T. Yarman Vural, “Transfer Learning for Brain Decoding using Deep Architectures,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54962.