COMBINED IR AND MASS-SPECTROMETRIC ANALYSIS OF EVOLVED GASES DURING PYROLYSIS OF POLYMERS

1993-01-01
YALCIN, T
Akbulut, Ural
SUZER, S
Gas Phase IR and Mass Spectroscopic techniques are combined for the analysis of gaseous pyrolysis products of polybutadiene sulfone prepared by Co-60 gamma radiation. It is shown that the combination of the two techniques, for evolved gas analysis, leads to a more definitive product identification.
JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRY

Suggestions

The influence of polymerization temperature on structure and properties of polyaniline
Yilmaz, Faris; Kucukyavuz, Zuhal (2009-01-31)
The influence of polymerization temperature (from -25 to +25 degrees C) on molecular weight, crystallinity, electrical conductivity, thermal and morphological properties of polyaniline has been investigated. Aniline was oxidized in an aqueous medium with ammonium persulfate and 1.0 M hydrochloric acid. The reaction mixture freezes below -10 degrees C and hence lithium chloride was used in sufficient amount to prevent freezing. As the reaction temperature decreases, both the molecular weight of polyaniline a...
A Monte Carlo method to solve for radiative effective thermal conductivity for particle beds of various solid fractions and emissivities
Johnson, Evan; Tarı, İlker; Baker, Derek Keıth (Elsevier BV, 2020-07-01)
A method is described to find the effective thermal conductivity due to radiation (k(rad)) for groups of particles at packed and less than packed states. Unlike most previous studies, the method does not rely on the assumption of a unit cell or absorption and scattering coefficients to derive k(rad). In this method, radiation is modeled with a 3D Monte Carlo ray tracing code, steady state particle temperatures are found with a particle-particle heat exchange simulation, and k(rad) is found with a comparison...
Non-isothermal DSC and TG/DTG analysis of the combustion of silopi asphaltites
Kök, Mustafa Verşan (2007-06-01)
In this research, non-isothermal combustion and kinetics of Silopi (Turkey) asphaltite samples were investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). A sample size of 10 mg, heating rates of 5, 10, 15 and 200C min(-1) were used in the temperature range of 20-600 degrees C, under air atmosphere. Two reaction regions were observed in DSC curves. The first region is due to the evaporation of moisture in asphaltite sample whereas, release of volatile matter and burning of ca...
Analysis of polymers using evolved-gas and direct-pyrolysis techniques
Fares, Mohammed M.; Yalcin, Talat; Hacaloğlu, Jale; Gungor, Atilla; Suzer, Sefik (1994-12-01)
Thermal analysis of polystyrene, poly(p-methylstyrene) and poly(a-methylstyrene) has been carried out using evolved-gas analysis by infrared and mass spectrometry, and directpyrolysis analysis by mass spectrometric techniques. Evolved-gas analysis, both by infrared and mass spectrometry, reveals features due mainly to the corresponding monomers or stable, volatile, and low relative molecular mass degradation products. In direct-pyrolysis mass spectrometry, however, primary decomposition products and heavier...
A pyrolysis mass spectrometry study of polythiophene-polyamide composites
Vatansever, F.; Akbulut, Ural; Toppare, Levent Kamil; Hacaloğlu, Jale (1996-01-01)
The thermal behavior of composites of polythiophene and polyamide prepared by mechanical blending and electrochemical synthesis of polythiophene onto an electrode coated with polyamide have been studied thoroughly by the pyrolysis approach under both direct and indirect pyrolysis mass spectrometric analysis conditions. It is determined that the electrolytic film has different properties from the mechanical mixture and the related homopolymers.
Citation Formats
T. YALCIN, U. Akbulut, and S. SUZER, “COMBINED IR AND MASS-SPECTROMETRIC ANALYSIS OF EVOLVED GASES DURING PYROLYSIS OF POLYMERS,” JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRY, pp. 55–59, 1993, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55638.