EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER AND PRESSURE DROP FOR TWO-PHASE R134A FLOW IN A 1.65 MM COPPER TUBE

2010-07-24
Tekin, Bilgehan
Güvenç Yazıcıoğlu, Almıla
Kerpicci, Husnu
Kakac, Sadik
Heat transfer in small scale media is a phenomenon that has been increasingly scrutinized in the past few decades. Refrigerant flow in microscale tubes and channels is a promising solution to be used in future refrigeration technology. Experimental studies are significant for the rating of the heat transfer and pressure drop in a given channel, and are important tools for optimizing applicable designs. An overview of the previous studies in this area has shown that most of the research does not focus on the low mass flow rates encountered in household refrigeration systems. In the current study, heat transfer in a copper tube with 1.65 mm inner diameter with two-phase R134a flow is experimentally investigated under low mass flow rate conditions. In the set-up constructed, instead of constant wall heat flux, which is the boundary condition mainly used in the microscale heat transfer studies in literature, constant wall temperature approach is applied. The experimental procedure is designed to focus on the temperatures and the flow rates observed during evaporation in a typical household refrigeration cycle. Since the flow is in the two-phase region, experiments for different quality values of R134a are conducted by pre-heating the refrigerant at different saturation temperatures and pressures. In microscale flow, a major problem is the increase in pressure drop compared to conventionally-sized channels, and the two-phase flow regime contributes to this increase. Therefore, in addition to the heat transfer, the pressure drop of the refrigerant along the tube is also measured. Thus, for various quality values, the pressure drop and the heat transfer for the refrigerant flow are examined. The experimental data obtained will be useful information for the two-phase flow modeling and the model verification.
10th ASME Biennial Conference on Engineering Systems Design and Analysis

Suggestions

Development of a cfd assisted 3-d modeling and analysis methodology for grooved heat pipe design and performance assessment
Gökçe, Gökay; Dursunkaya, Zafer; Department of Mechanical Engineering (2020-10-13)
Although the idea of phase change heat transfer has a long history going back to mid 19th century, modeling of multi-phase heat transfer still draws interest from the engineers and scientists worldwide due to its complex nature. Taking advantage of phase-change heat transfer, heat pipes have been used effectively in numerous industrial applications for thermal management of electronic components due to their tremendous advantages. However, multi-dimensional modeling of heat pipes is a challenging task, ...
HEAT TRANSFER ENHANCEMENT IN LAMINAR CONVECTIVE HEAT TRANSFER WITH NANOFLUIDS
Özerinç, Sezer; YAZICIOGLU, A. G. (2011-06-03)
In order to utilize nanofluids in practical applications, accurate prediction of forced convection heat transfer of nanofluids is necessary. In the first part of the present study, we consider the application of some classical correlations of forced convection heat transfer developed for the flow of pure fluids to the case of nanofluids by the use of nanofluid thermophysical properties. The results are compared with experimental data available in the literature, and it is shown that this approach underestim...
Numerical analysis of laminar forced convection with temperature-dependent thermal conductivity of nanofluids and thermal dispersion
Özerinç, Sezer; Kakac, S. (2012-12-01)
Nanofluids are promising heat transfer fluids due to their high thermal conductivity. In order to utilize nanofluids in practical applications, accurate prediction of forced convection heat transfer of nanofluids is necessary. In the first part of the present study, we consider the application of some classical correlations of forced convection heat transfer developed for the flow of pure fluids to the case of nanofluids by the use of nanofluid thermophysical properties. The results are compared with experi...
Experimental analysis of energy storage device using phase change material integrated with a milk storage system
Nıma, Bonyadı; Somek, Suleyman Kazım; C Cıhan, Ozalevlı; Baker, Derek Keıth; Tarı, İlker (null; 2015-08-12)
Phase change materials (PCMs) have the advantage of storing latent heat at constant temperature and can possess higher energy storage densities in comparison to materials storing sensible heat. Due to these features, latent heat Thermal Energy Storage (TES) devices using PCMs are widely used to store heat in thermal systems. The aim of this study is to experimentally investigate the performance of water PCM in an improved milk storage cooling cycle integrated with a TES device. In this prototype, water is u...
Experimental investigation of single phase liquid flow and heat transfer in multiport minichannels
Altınöz, Mesru; Güvenç Yazıcıoğlu, Almıla; Baker, Derek Keıth; Department of Mechanical Engineering (2013)
This thesis aims to experimentally investigate pressure drop and heat transfer characteristics of single phase water flow in rectangular minichannels. The small channels are an area of interest in heat transfer field since 1970’s owing to their enhanced heat transfer characteristics. However, the heat transfer and pressure drop characteristics of these channels are not fully established as there is a wide number of studies in literature showing inconsistent results with each other. In order to investigate t...
Citation Formats
B. Tekin, A. Güvenç Yazıcıoğlu, H. Kerpicci, and S. Kakac, “EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER AND PRESSURE DROP FOR TWO-PHASE R134A FLOW IN A 1.65 MM COPPER TUBE,” presented at the 10th ASME Biennial Conference on Engineering Systems Design and Analysis, Istanbul, TURKEY, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55739.