Hide/Show Apps

Multisensor controlled robot system for recognizing and tracking moving multiple objects

This paper presents a cost-efficient, real-time vision-sensor system for identifying, locating and tracking objects that are unknown and randomly placed on a moving conveyor belt. The visual information obtained from a conventional frame-store unit and an end-effector based proximity sensor outputs are incorporated in a fuzzy-logic control algorithm to make the robotic manipulator grasp moving objects. The robot movements are going to be the result of the comparative measurements made by the sensors after the motion of the moving target is predicted and the gripper is brought into a zone close to the object to be grasped by the application of a vision system. The mobile object is traced by controlling the motion of the end-effector with an end-effector based infrared proximity sensors and conveyor position encoder by keeping the gripper's axis to pass through a median plane of the moving object. With this procedure and using the fuzzy-logic control, the system is adapted to pursue of a mobile object. Laboratory experiments are presented to demonstrate the performance Of this system, (C) 1999 John Wiley & Sons, Inc.