Prediction of Ice Crystal Accretion with TAICE

Ayan, Erdem
Özgen, Serkan
Murat, Canibek
Tarhan, Erhan
Copyright © 2015 SAE International.Ice crystal ingestion to aircraft engines may cause ice to accrete on internal components, leading to flameout, mechanical damage, rollback, etc. Many in-flight incidents have occurred in the last decades due to engine failures especially at high altitude convective weather conditions [1]. Thus, in the framework of HAIC FP7 European project, the physical mechanisms of ice accretion on surfaces exposed to ice-crystals and mixed-phase conditions are investigated. Within the HAIC FP7 European project, TAI will implement models related to the ice crystal accretion calculation to the existing ice accumulation prediction program for droplets, namely TAICE. Considered models include heat transfer & phase change model, drag model and impact model. Moreover, trajectory model and Extended Messinger Model require some modifications to be used for ice crystal accretion predictions. For drag coefficient calculations, Ganser model has been chosen as the most applicable among the models found in the literature for non- spherical particles and was implemented to the program [2]. However, for some flow conditions, this drag model deviates from the experimental results. Thus, by including existing models [3, 4], effect of drag models on collection efficiency will be studied in this paper. Moreover, for heat transfer and phase change parts, ONERA model is used due its simplicity and easily applicability [5]. For convective heat transfer coefficient estimations, Integral Boundary Layer Method is currently being used [6]. However, more accurate heat transfer models are required in complex porous ice-water layer predictions and it should be taken into consideration as one of the primary issues for ice crystal accretion calculations. Moreover, impact model including bouncing, fragmentation and partially sticking will improve the accuracy of the prediction and an upgraded version of the Extended Messinger Model will be achieved with those modifications.
SAE 2015 International Conference on Icing of Aircraft, Engines, and Structures


Understanding mechanical failure of graphite rocket nozzle throats under thermal stresses
Nigar, Barış; Dönmez, Serhan; Çöker, Demirkan; Özerinç, Sezer (2021-12-01)
© 2021 Elsevier Masson SASMechanical failure of graphite nozzle throats is a common problem of rocket engines. The extreme operating conditions constitute the main cause of the problem, resulting in thermal shock-induced cracking. However, the exact mechanisms of crack initiation and propagation are not well-understood. This study presents a detailed investigation of the problem by combining computational fluid dynamics simulation of the supersonic flow, finite element modeling of the thermal shock, and ext...
Analysis of regenerative cooling ın liquid propellant rocket engines
Boysan, Mustafa Emre; Ulaş, Abdullah; Department of Mechanical Engineering (2008)
High combustion temperatures and long operation durations require the use of cooling techniques in liquid propellant rocket engines. For high-pressure and high-thrust rocket engines, regenerative cooling is the most preferred cooling method. In regenerative cooling, a coolant flows through passages formed either by constructing the chamber liner from tubes or by milling channels in a solid liner. Traditionally, approximately square cross sectional channels have been used. However, recent studies have shown ...
Simulation of Rapidly Maneuvering Airfoils with Synthetic Jet Actuators
Jee, SolKeun; Lopez Mejia, Omar D.; Moser, Robert D.; Muse, Jonathan A.; Kutay, Ali Türker; Calise, Anthony J. (American Institute of Aeronautics and Astronautics (AIAA), 2013-08-01)
Synthetic jet actuators are investigated for rapidly maneuvering airfoils that are regulated by a closed-loop control system. To support active flow-control simulations performed here, the closed-loop system and vehicle dynamics are coupled with computational fluid dynamics. High-frequency sinusoidal pitching simulations with and without synthetic jet actuation indicate that the current synthetic jet actuators provide bidirectional change in aerodynamic forces during rapid maneuvers whose time scales are of...
Effect of hydrogen on fatigue behavior of a cadmium coated high strength steel
Güleken, Ümran Başak.; Gürbüz, Rıza; Department of Metallurgical and Materials Engineering (2019)
C Despite the associated health and safety concerns of Cadmium, this material remains the most commonly used fastener plating material in aerospace applications. The plating operation is done by a well understood and common electrodeposition process. If a cadmium plated part has high strength (1000 MPa and above) then in order to prevent hydrogen embrittlement it must be baked at 191°C for 23 hours, within 2 hours after plating. Yet it has been seen that parts fail due to hydrogen embrittlement during servi...
Prediction of damage in R/C shear panels subjected to reversed cyclic loading
Hindi, R; Mansour, M; Dicleli, Murat (Informa UK Limited, 2005-01-01)
In this paper, the damage prediction of shear-dominated reinforced concrete (RC) elements subjected to reversed cyclic shear is presented using an existing damage model. The damage model is primarily based on the monotonic energy dissipating capacity of structural elements before and after the application of reversed cyclic loading. Therefore, it could be universally applicable to different types of structural members, including shear-dominated RC members. The applicability of the damage model to shear-domi...
Citation Formats
E. Ayan, S. Özgen, C. Murat, and E. Tarhan, “Prediction of Ice Crystal Accretion with TAICE,” presented at the SAE 2015 International Conference on Icing of Aircraft, Engines, and Structures, 2015, Accessed: 00, 2020. [Online]. Available: