A neural optimizer for hypercube embedding

1999-06-01

Suggestions

A novel neural network based approach for direction of arrival estimation
Çaylar, Selçuk; Dural Ünver, Mevlüde Gülbin; Department of Electrical and Electronics Engineering (2007)
In this study, a neural network(NN) based algorithm is proposed for real time multiple source tracking problem based on a previously reported work. The proposed algorithm namely modified neural network based multiple source tracking algorithm (MN-MUST) performs direction of arrival(DoA) estimation in three stages which are the detection, filtering and DoA estimation stages. The main contributions of this proposed system are: reducing the input size for the uncorrelated source case (reducing the training tim...
A neuro-fuzzy MAR algorithm for temporal rule-based systems
Sisman, NA; Alpaslan, Ferda Nur; Akman, V (1999-08-04)
This paper introduces a new neuro-fuzzy model for constructing a knowledge base of temporal fuzzy rules obtained by the Multivariate Autoregressive (MAR) algorithm. The model described contains two main parts, one for fuzzy-rule extraction and one for the storage of extracted rules. The fuzzy rules are obtained from time series data using the MAR algorithm. Time-series analysis basically deals with tabular data. It interprets the data obtained for making inferences about future behavior of the variables. Fu...
A digital neuron realization for the random neural network model
CERKEZ, CUNEYT; AYBAY, HADİ IŞIK; Halıcı, Uğur (1997-06-12)
In this study the neuron of the random neural network (RNN) model (Gelenbe 1989) is designed using digital circuitry. In the RNN model, each neuron accumulates arriving pulses and can fire if its potential at a given instant of time is strictly positive. Firing occurs at random, the intervals between successive firing instants following an exponential distribution of constant rate. When a neuron fires, it routes the generated pulses to the appropriate output lines in accordance with the connection probabili...
A parallel ant colony optimization algorithm based on crossover operation
Kalınlı, Adem; Sarıkoç, Fatih (Springer, 2018-11-01)
In this work, we introduce a new parallel ant colony optimization algorithm based on an ant metaphor and the crossover operator from genetic algorithms.The performance of the proposed model is evaluated usingwell-known numerical test problems and then it is applied to train recurrent neural networks to identify linear and nonlinear dynamic plants. The simulation results are compared with results using other algorithms.
A PARALLEL BACKWARD-CHAINING INFERENCE ENGINE FOR PRODUCTION SYSTEMS
ABUSUOD, SM; TOLUN, MR (1992-04-24)
In this paper, a new model to parallelize the backward-chaining inference technique in production systems called ParBack is presented. In this model, the data dependencies between rules are analyzed and then converted to special notations that constitute the search space. Parallelism is exploited in three directions: some processors are dedicated to perform the inference process; other processors perform processes that guide the inference process to the useful paths in the search space; and a third group of...
Citation Formats
U. Halıcı, “A neural optimizer for hypercube embedding,” NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, pp. 785–797, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56398.