Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Recovery potentials of cenospheres from bituminous coal fly ashes
Date
2016-09-15
Author
ACAR, İlker
Atalay, Mustafa Ümit
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
66
views
0
downloads
Cite This
Cenospheres are defined as hollow spherical particles with density less than water. This definition is based on natural concentration of cenospheres from fly ashes in wet disposal sites, i.e. ponds or lagoons. On the other hand, the lowest-density oxide in fly ashes, crystalline silica, has a density of 2.6 g/cm(3). Therefore, hollow particles with densities of up to 2.6 g/cm(3) are also present in fly ashes depending on the wall thickness and the ratio of the hollow part. These heavier cenospheres could also have high-value applications in construction industry as fillers and reinforcements. In this study, recovery potentials of cenospheres from two bituminous coal fly ashes were examined as a function of density and size. Fly ash samples from Catalagzi (CFA) and Sugozu (SFA) thermal power plants were first subjected to float-sink, wet sieving and air classification tests to separate them into various products. These products were then analyzed under optical microscope for their cenosphere contents on the basis of point counting and area estimations. Separation efficiency was evaluated in terms of yield, cenosphere content and recovery of the products. Overall results showed that CFA has much more cenospheres than SFA, and cenosphere contents decreased with decreasing size and increasing density for both samples. Despite similar variations in cenosphere contents through density and size, CFA exhibited much higher yields and recoveries compared to SFA for the respective product.
Subject Keywords
Fly ash
,
Cenosphere
,
Separation
,
Point counting
,
Image analysis
URI
https://hdl.handle.net/11511/56474
Journal
FUEL
DOI
https://doi.org/10.1016/j.fuel.2016.04.013
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Modeling of fluid -vapor interface in the condensation zone of a grooved heat pipe
Alipour, Mobin; Dursunkaya, Zafer; Department of Mechanical Engineering (2017)
Condensation in grooved heat pipes involves several simultaneous phenomena including vapor-liquid boundaries whose shapes are unknown a priori, fluid flow due to capillary and dispersion pressure gradients and condensation over ultra thin films. In grooved heat pipes, the majority of condensation occurs on fin tops due to the thinner liquid film, having a lower thermal resistance, compared to inside the groove where the fluid is substantially thicker. Majority of the studies in the literature assume an appr...
Performance of rectangular fins on a vertical base in free convection heat transfer
Yazıcıoğlu, Burak; Yüncü, Hafit; Department of Mechanical Engineering (2005)
The steady-state natural convection heat transfer from vertical rectangular fins extending perpendicularly from vertical rectangular base was investigated experimentally. The effects of geometric parameters and base-to-ambient temperature difference on the heat transfer performance of fin arrays were observed and the optimum fin separation values were determined. Two similar experimental set-ups were employed during experiments in order to take measurements from 30 different fin configurations having fin le...
Numerical simulation of thermal convection under the influence of a magnetic field by using solenoidal bases
Yarımpabuç, Durmuş; Tarman, Işık Hakan; Department of Engineering Sciences (2011)
The effect of an imposed magnetic field on the thermal convection between rigid plates heated from below under the influence of gravity is numerically simulated in a computational domain with periodic horizontal extent. The numerical technique is based on solenoidal basis functions satisfying the boundary conditions for both velocity and induced magnetic field. The expansion bases for the thermal field are also constructed to satisfy the boundary conditions. The governing partial differential equations are ...
Sound Velocity in Dense Matter Such as Neutron Stars
Oğurol, Leyla; Tekin, Bayram; Department of Physics (2022-2-11)
Properties of matter at ultra-high density, called dense matter, is an important subject that has been studied theoretically and experimentally in recent years. In a very dense system, a composite matter consisting of nucleons, pions, hadrons would overlap, so the new form of matter constituting quarks and gluons would occur at a baryon density of around ten times the ordinary nuclear density. Such a transition could have appeared in the early universe during the first microsecond of the Big Bang, in the co...
Liquid bridges between spheres in a gravitational field
Bayramlı, Erdal; Abou-Obeid, A; Van De Ven, T.G.M (Elsevier BV, 1987-4)
A theoretical study has been made of the properties of a liquid bridge between spheres of equal and unequal radii taking into account the effect of gravity on the meniscus shape and capillary attractions. The interfacial shape of the bridge is obtained by a numerical solution of the Young-Laplace equation employing the Runge-Kutta method for a given sphere pair, liquid bridge volume, and contact angle. The capillary force, sphere separation, minimum neck diameter, and filling angle of the liquid on both sph...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. ACAR and M. Ü. Atalay, “Recovery potentials of cenospheres from bituminous coal fly ashes,”
FUEL
, pp. 97–105, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56474.