Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The efficacy of bioceramics for the closure of burr-holes in craniotomy: Case studies on 14 patients
Date
2013-01-01
Author
Izci, Yusuf
Secer, Halil Ibrahim
Ilica, Ahmet Turan
Karacalioglu, Ozgur
Onguru, Onder
Timucin, Muharrem
Korkusuz, Feza
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
27
views
0
downloads
Cite This
Purpose: Bioceramics are currently in use to cover bone defects in orthopedics and craniofacial surgery. But their compatibility and efficacy in cranium were not investigated in detail. The aims of this study were to produce, characterize, and assess the biocompatibility and osteointegration of Si-HA, Si-Sr-HA, HA-Wollastonite, and HA-Wollastonite-Frit bioceramics.
Subject Keywords
Wollastonite
,
Strontium
,
Hydroxyapatite
,
Craniotomy
,
Bioceramics
URI
https://hdl.handle.net/11511/57207
Journal
JOURNAL OF APPLIED BIOMATERIALS & FUNCTIONAL MATERIALS
DOI
https://doi.org/10.5301/jabfm.2012.9252
Collections
Department of Physical Education and Sports, Article
Suggestions
OpenMETU
Core
Preparation and characterization of chitosan-gelatin/hydroxyapatite scaffolds for hard tissue engineering approaches
Işıklı, Cansel; Hasırcı, Nesrin; Department of Biomedical Engineering (2010)
Hard tissue engineering holds the promise of restoring the function of failed hard tissues and involves growing specific cells on extracellular matrix (ECM) to develop „„tissue-like” structures or organoids. Chitosan is a linear amino polysaccharide that can provide a convenient physical and biological environment in tissue regeneration attempt. To improve chitosan‟s mechanical and biological properties, it was blended with another polymer gelatin. 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-...
In Vivo Performance of Poly(epsilon-caprolactone) Constructs Loaded with Gentamicin Releasing Composite Microspheres for Use in Bone Regeneration
Sezer, Umran Aydemir; BİLLUR, DENİZ; HURİ, GAZİ; Huri, Pinar Yilgor; AKSOY, EDA AYŞE; Terzioglu, Hakan; Konukseven, Erhan İlhan; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2014-10-01)
For materials used in the production of dental and orthopedic implants or scaffolds for bone tissue regeneration, the properties such as capacity to enhance cell attachment and proliferation, and antimicrobial activity to prevent biofilm formation are very important to improve the clinical utility of the material. In this study, poly(epsilon-caprolactone) (PCL) sponges with antimicrobial activity were prepared by incorporating gentamicin loaded beta-tricalcium phosphate (beta-TCP)-Gelatin microspheres, and ...
The role of multiple toll-like receptor signalling cascades on interactions between biomedical polymers and dendritic cells
Shokouhi, Behnaz; Coban, Cevayir; Hasırcı, Vasıf Nejat; Aydin, Erkin; Dhanasingh, Anandhan; Shi, Nian; Koyama, Shohei; Akira, Shizuo; Zenke, Martin; Sechi, Antonio S. (2010-08-01)
Biomaterials are used in several health-related applications ranging from tissue regeneration to antigen-delivery systems. Yet, biomaterials often cause inflammatory reactions suggesting that they profoundly alter the homeostasis of host immune cells such as dendritic cells (DCs). Thus, there is a major need to understand how biomaterials affect the function of these cells. In this study, we have analysed the influence of chemically and physically diverse biomaterials on DCs using several murine knockouts. ...
Predicting bone remodeling around tissue- and bone-level dental implants used in reduced bone width
Eser, Atilim; Tönük, Ergin; Akça, Kıvanç; Dard, Michel M.; Cehreli, Murat Cavit (Elsevier BV, 2013-09-03)
The objective of this study was to predict time-dependent bone remodeling around tissue- and bone-level dental implants used in patients with reduced bone width. The remodeling of bone around titanium tissue-level, and titanium and titanium-zirconium alloy bone-level implants was studied under 100 N oblique load for one month by implementing the Stanford theory into three-dimensional finite element models. Maximum principal stress, minimum principal stress, and strain energy density in pen-implant bone and ...
The effect of strontium-containing silicon-doped hydroxyapatite ceramics on bone defect healing
Kerman, Gözde; Korkusuz, Feza; Volkan, Mürvet; Department of Biotechnology (2011)
Hydroxyapatite (HA) based bioceramics have been developed to treat bone defects for the last 30 years. Doping HA with elements is a common approach to increase mechanical strength, biocompatibility and osteointegrity. Bone morphogenetic protein (BMP)-containing bioceramic composites enhance osteointegrity and induce bone formation. Strontium (Sr) is currently used to treat osteoporosis clinically as this element inhibits bone resorption and stimulates bone formation. In this study, HA was doped with silicon...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Izci et al., “The efficacy of bioceramics for the closure of burr-holes in craniotomy: Case studies on 14 patients,”
JOURNAL OF APPLIED BIOMATERIALS & FUNCTIONAL MATERIALS
, pp. 187–196, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57207.