Simulating probabilistic sampling on particle populations to assess the threshold sample sizes for particle size distributions

Camalan, Mahmut
The primary objective in sampling is to acquire the smallest sample as a reliable estimate of a particle population. This study aims to assess the threshold (minimum) sample sizes for reliable estimation of particle size distributions. For that purpose, samples were simulated from particle populations artificially generated from the Gates-Gaudin-Schumann model. Then, two-sample Kolmogorov-Smirnov and Chi-Square Goodness-of-Fit tests were implemented between the number-weighted size distributions of samples and their parent populations. Results suggest that continuous size distributions can be estimated with at least 36-40% of the number of population particles. Corresponding masses to estimate continuous distributions varies between 34% and 68% population mass, where smaller populations may require larger samples. Results indicate that probabilistic sampling may be insufficient to estimate the discrete number-weighted size distributions. Probabilistic sampling seems insufficient to estimate the mass-weighted size distribution of widely sized population particles. Estimating mass-weighted distributions requires larger samples than their number-weighted equivalents. Mass-weighted size distributions of samples better fit at the finest or the coarsest size ranges than the mid-size range of their population. If a population is large, the percent population mass taken as a sample is nearly equal to the percent number of population particles.


The use of non-parametric tests between subsamples and particle population for the assessment of minimum number of particles in microscopic analysis
Camalan, Mahmut (Informa UK Limited, 2020-08-01)
The use of small and reliable samples in a microscopic analysis can decrease the time to estimate the particle size and mineral grade distributions in a population of particles. This paper attempts to assess the minimum reliable sample size for the above-mentioned distributions, by implementing non-parametric tests on the subsamples taken from a specific population of 2800 particles. The Kolmogorov-Smirnov tests show that the subsamples which contain more than 800 particles (29% of the population) cannot gi...
Doğu, Timur (Informa UK Limited, 1991-01-01)
A simple model was proposed for the prediction of tortuosity factor of porous solids with mono or bidispersed pore size distributions. Model predictions were presented in graphical form for quick estimation of tortuosity. The experimental tortuosity factors reported in the literature for porous solids of different pore structures and the corresponding predicted values showed good agreement.
Estimating the number-weighted equivalents of the mass-weighted size distribution functions
Camalan, Mahmut (Elsevier BV, 2020-06-01)
The number-weighted particle size distributions are difficult to be estimated experimentally. This study offers a simple conversion method to convert mass-weighted distributions to their number-weighted equivalents. Besides, the number-weighted equivalents of the Gates-Gaudin-Schuhmann, Gaudin-Meloy, Pareto, and Rosin-Rammler distributions were determined by the conversion method. The accuracy of the method was successfully confirmed on the artificial populations generated from the Gates-Gaudin-Schuhmann, R...
Comparison of Fenitrothion and Trifluralin Adsorption on Organo-Zeolites and Activated Carbon. Part II: Thermodynamic Parameters and the Suitability of the Kinetic Models of Pesticide Adsorption
LÜLE ŞENÖZ, Güzide Meltem; Atalay, Mustafa Ümit (Informa UK Limited, 2014-07-04)
The suitability of two kinetic models and the thermodynamic parameters of pesticide adsorption were investigated based on obtained data of previous studies. Kinetic evaluation indicated that the pesticides adsorption on adsorbents followed the pseudo-second-order model. Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (Delta S degrees) were calculated for thermodynamic parameters by using linearized Arrhenius equation. The results indicated that the sorption process of fenitrothi...
Analysis of the electrofiltration mechanism based on multiphase filtration theory
Genc, A; Tosun, I (Informa UK Limited, 2004-01-01)
A mathematical model based on multiphase filtration theory is developed to describe the electrofiltration process. The model takes both electrophoretic and electroosmotic effects into account. The electrophoretic migration velocity of solid particles is predicted from the model using the filtrate volume time data obtained from electrofiltration experiments.
Citation Formats
M. Camalan, “Simulating probabilistic sampling on particle populations to assess the threshold sample sizes for particle size distributions,” PARTICULATE SCIENCE AND TECHNOLOGY, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: