Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Necessary and sufficient condition for oscillation of higher order nonlinear delay difference equations
Date
1998-05-01
Author
Zafer, Ağacık
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
42
views
0
downloads
Cite This
This paper is concerned with the oscillation of solutions of higher order nonlinear delay difference equations with forcing terms of the form
URI
https://hdl.handle.net/11511/57313
Journal
COMPUTERS & MATHEMATICS WITH APPLICATIONS
DOI
https://doi.org/10.1016/s0898-1221(98)00078-9
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Forced Oscillation of Second-Order Impulsive Differential Equations with Mixed Nonlinearities
ÖZBEKLER, ABDULLAH; Zafer, Ağacık (2011-07-08)
In this paper we give new oscillation criteria for a class of second-order mixed nonlinear impulsive differential equations having fixed moments of impulse actions. The method is based on the existence of a nonprincipal solution of a related second-order linear homogeneous equation.
Optimal Control of Diffusion Convection Reaction Equations Using Upwind Symmetric Interior Penalty Galerkin SIPG Method
Karasözen, Bülent; Yücel, Hamdullah (2012-05-01)
We discuss the numerical solution of linear quadratic optimal control problem with distributed and Robin boundary controls governed by diffusion convection reaction equations. The discretization is based on the upwind symmetric interior penalty Galerkin (SIPG) methods which lead to the same discrete scheme for the optimize-then-discretize and the discretize-then-optimize.
Numerical solution of nonlinear reaction-diffusion and wave equations
Meral, Gülnihal; Tezer, Münevver; Department of Mathematics (2009)
In this thesis, the two-dimensional initial and boundary value problems (IBVPs) and the one-dimensional Cauchy problems defined by the nonlinear reaction- diffusion and wave equations are numerically solved. The dual reciprocity boundary element method (DRBEM) is used to discretize the IBVPs defined by single and system of nonlinear reaction-diffusion equations and nonlinear wave equation, spatially. The advantage of DRBEM for the exterior regions is made use of for the latter problem. The differential quad...
Bounded oscillation of nonlinear neutral differential equations of arbitrary order
Yilmaz, YS; Zafer, Ağacık (2001-01-01)
The paper is concerned with oscillation properties of n-th order neutral differential equations of the form
Integral criteria for oscillation of third order nonlinear differential equations
AKTAŞ, MUSTAFA FAHRİ; Tiryaki, Aydın; Zafer, Ağacık (Elsevier BV, 2009-12-15)
In this paper we are concerned with the oscillation of third order nonlinear differential equations of the form
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Zafer, “Necessary and sufficient condition for oscillation of higher order nonlinear delay difference equations,”
COMPUTERS & MATHEMATICS WITH APPLICATIONS
, pp. 125–130, 1998, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57313.