Hydrogen storage behavior of C-116 system - AM1 treatment

2003-10-01
Türker, Burhan Lemi
The strong dimer Of C-60, C-116, is considered for the hydrogen storage purpose. Its molecular structure possesses three distinct compartments. By using two different techniques at the molecular level, various numbers of hydrogen molecules are inserted into C-116 molecule and then the corresponding composite systems are geometry optimized by using a semiempirical quantum chemical method (AM1-RHF approach) and the distribution of the hydrogens among the compartments are investigated. All the structures have been found to be stable but endothermic in nature. (C) 2003 International Association for Hydrogen Energy. Published by Elsevier Science Ltd. All rights reserved.
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

Suggestions

Catalytic hydrolysis of hydrazine borane for chemical hydrogen storage: Highly efficient and fast hydrogen generation system at room temperature
Karahan, Senem; Zahmakiran, Mehmet; Özkar, Saim (2011-04-01)
There has been rapidly growing interest for materials suitable to store hydrogen in solid state for transportation of hydrogen that requires materials with high volumetric and gravimetric storage capacity. B-N compounds such as ammonia-triborane, ammonia-borane and amine-borane adducts are well suited for this purpose due to their light weight, high gravimetric hydrogen storage capacity and inclination for bearing protic (N-H) and hydridic (B-H) hydrogens. In addition to them, more recent study [261 has sho...
Water soluble laurate-stabilized ruthenium(0) nanoclusters catalyst for hydrogen generation from the hydrolysis of ammonia-borane: High activity and long lifetime
DURAP, FEYYAZ; Zahmakiran, Mehmet; Özkar, Saim (2009-09-01)
The simplest amine-borane, considered as solid hydrogen storage material, ammonia-borane (H(3)NBH(3)) can release hydrogen gas upon catalytic hydrolysis under mild conditions. Herein, we report the preparation of a novel catalyst, water dispersible laurate-stabilized ruthenium(0) nanoclusters from the dimethylamine-borane reduction of ruthenium(III) chloride in sodium laurate solution at room temperature. The ruthenium nanoclusters in average size of 2.6 +/- 1.2 nm were isolated from the solution and well c...
On the Preparation of Mg2Ni by Combining Electrodeoxidation and Electrolysis Techniques
ERDEN, Fuat; Karakaya, İshak; Erdogan, Metehan (2014-11-01)
Mg2Ni is a well-known hydrogen storage alloy. Most of the preparative methods for this alloy require high temperature processing of pure magnesium and nickel. The proposed method, studied in this work, involves the production of Mg2Ni alloy directly from NiO and MgCl2 in an electrochemical cell. This method can eliminate the difficulties that may arise, during handling due to the reactive nature of metallic components, especially Mg. XRD patterns of reduced samples indicated the partial formation of Mg2Ni. ...
Ruthenium(III) acetylacetonate as catalyst precursor in the dehydrogenation of dimethylamine-borane
Ünel, Ebru; Özkar, Saim; Department of Chemistry (2011)
Amine boranes have recently been considered as solid hydrogen storage materials with high capability of hydrogen storage. Dimethylamine borane is one of the promising amine boranes with high theoretical gravimetric capacity of 16.9 wt%. Dimethylamine borane can undergo dehydrogenation only in the presence of a suitable catalyst at moderate temperature. In this project, throughout the dehydrogenation of dimethylamine borane (DMAB), the catalytic activity of ruthenium(III) acetylacetonate was examined for the...
Rhodium(0) nanoparticles supported on nano oxide crystalline materials: preparation, characterization and catalytic use in hydrogen generation from the methanolysis of ammonia borane /
Özhava, Derya; Özkar, Saim; Department of Chemistry (2018)
Ammonia borane (AB) has been considered as a chemical hydrogen storage materials, because of its high hydrogen storage capacity (19.6 wt%), nontoxicity, and stability under ordinary conditions. Hydrogen stored in AB can be liberated by thermolysis or solvolysis. Hydrolysis and methanolysis are the two solvolysis reactions producing hydrogen gas from AB. Although the hydrolysis of AB has been investigated for years extensively, the methanolysis of AB has been considered as an alternative way of releasing hyd...
Citation Formats
B. L. Türker, “Hydrogen storage behavior of C-116 system - AM1 treatment,” INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, pp. 1115–1119, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62323.