THE LOCATION OF PEAK HEAT-TRANSFER ENHANCEMENT IN SUSPENSION FLOWS

1993-06-01
OZBELGE, TA

Suggestions

An experimental investigation of sootshell formation in microgravity droplet combustion
MANZELLO, SAMUEL L; Yozgatlıgil, Ahmet; CHOI, MUN YOUNG (Elsevier BV, 2004-11-01)
Spherically symmetric droplet combustion experiments were performed at the NASA Glenn Research Center (GRC) 2.2 second drop tower in Cleveland, OH in an effort to better understand the mechanism leading to sootshell format on. Rapid insertion of a blunt plunger was used to remove the symmetric sootshell that formed during the period of quasi-steady burning. This allowed for the observation of sootshell re-formation. Soot particles were formed near the flame front and migrated towards the droplet to ultimate...
An experimental investigation on performance of annular fins on a horizontal cylinder in free convection heat transfer
Yildiz, S; Yüncü, Hafit (Springer Science and Business Media LLC, 2004-02-01)
Natural convection heat transfer in annular fin-arrays mounted on a horizontal cylinder was experimentally investigated. An experimental set-up was constructed to investigate heat transfer characteristics of 18 sets of annular fin-arrays mounted on a horizontal cylinder of 24.9-mm diameter in atmospheric conditions. Keeping the fin thickness fixed at 1 mm, fin diameter is varied from 35 mm to 125 mm and fin spacing is varied from 3.6 mm to 31.7 mm. The base-to-ambient temperature difference was also varied ...
Modeling of particle-resin suspension impregnation in compression resin transfer molding of particle-filled, continuous fiber reinforced composites
Sas, Hatice Sinem; Erdal Erdoğmuş, Merve (Springer Science and Business Media LLC, 2014-03-01)
A particle-resin suspension impregnation model is used for analyzing the mold filling process in compression resin transfer molding (CRTM) of particle-filled, continuous fiber composites. The model is based on Darcy flow coupled with particle filtration and is applicable to two-dimensional impregnation through isotropic/anisotropic fiber preforms. Comparisons with simple analytical solutions and experimental results from the literature were made to validate the numerical solution. Simulations showed that CR...
Effect of variable thermal conductivity and viscosity on single phase convective heat transfer in slip flow
KAKAÇ, SADIK; Güvenç Yazıcıoğlu, Almıla; Gozukara, Arif Cem (Springer Science and Business Media LLC, 2011-08-01)
For a variety of fields in which micro-mechanical systems and electronic components are used, fluid flow and heat transfer at the microscale needs to be understood and modeled with an acceptable reliability. In general, models are prepared by making some extensions to the conventional theories by including the scaling effects that become important for microscale. Some of these effects are; axial conduction, viscous dissipation, and rarefaction. In addition to these effects, temperature variable thermal cond...
Optimization of Vortex Promoter Parameters to Enhance Heat Transfer Rate in Electronic Equipment
Ayli, Ece; Bayer, Özgür (ASME International, 2020-04-01)
In this paper, optimization of the location and the geometry of a vortex promoter located above in a finned surface in a channel with eight heat sources is investigated for a Reynolds number of 12,500 < Re < 27,700. Heat transfer rates and the corresponding Nusselt number distributions are studied both experimentally and numerically using different vortex promoter geometries (square, circular, and triangular) in different locations to illustrate the effect of vortex promoter on the fluid flow. Optimization ...
Citation Formats
T. OZBELGE, “THE LOCATION OF PEAK HEAT-TRANSFER ENHANCEMENT IN SUSPENSION FLOWS,” INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, pp. 535–538, 1993, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63844.