Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Prediction of Protein-Protein Interaction Relevance of Articles Using References
Date
2009-09-16
Author
Calli, Cagatay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
Classifying documents as protein-protein interaction (PPI) relevant or not is the first step towards extracting meaningful PPI data from article content. Currently, this classification step is handled manually by expert curators. A number of text-mining methods have been proposed to tackle this problem, using abstracts without references. We propose that article references contain important information that can be used to enhance these previous techniques. We trained an SVM classifier solely based on reference links extracted from Biocreative II data to test the effect of references. Our approach includes a feature selection method based on reference count imbalance between positive and negative examples. Classification results on Biocreative II test and Biocreative II.5 training datasets show that even simple referential information extracted from papers can be effective for predicting protein interaction.
Subject Keywords
Biocreative
,
Text-mining
,
Protein-protein interaction
URI
https://hdl.handle.net/11511/64043
DOI
https://doi.org/10.1109/iscis.2009.5291842
Collections
Department of Computer Engineering, Conference / Seminar