Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Newton-Raphson solution of cryogenic homogenous two-phase flow in convergent-divergent nozzles
Date
1997-05-01
Author
Akmandor, LS
Nagashima, T
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
128
views
0
downloads
Cite This
An implicit finite volume algorithm has been written to solve the steady one-dimensional vapor-liquid, two-phase, inviscid, compressible flow. The speed of sound definition based on flow quality and void fraction has been given along with some two-phase gas dynamic relations. Shocks have been captured by the steady Euler solver incorporating an artificial two-phase compressibility expression which has been added at transonic region according to the upwinded density concept. The fully coupled linearized system of equations is solved by a rapid Newton-Raphson solution procedure, Subcooled nitrogen flow through two convergent divergent nozzles has been analyzed. Homogeneous equilibrium and non-equilibrium results have been compared with analytical, experimental and numerical results, as means to validate the present solution.
Subject Keywords
Two-phase flow
,
Homogeneous
,
Speed of sound
,
Cryogenic nitrogen
,
Choked nozzle
URI
https://hdl.handle.net/11511/64703
Journal
TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Parallel processing of two-dimensional euler equations for compressible flows
Doǧru, K.; Aksel, M.h.; Tuncer, İsmail Hakkı (2008-12-01)
A parallel implementation of a previously developed finite volume algorithm for the solution of two-dimensional, unsteady, compressible Euler equations is given. The conservative form of the Euler equations is discretized with a second order accurate, one-step Lax-Wendroff scheme. Local time stepping is utilized in order to accelerate the convergence. For the parallel implementation of the method, the solution domain is partitioned into a number of subdomains to be distributed to separate processors for par...
Linear Algebraic Analysis of Fractional Fourier Domain Interpolation
Öktem, Sevinç Figen (2009-01-01)
n this work, we present a novel linear algebraic approach to certain signal interpolation problems involving the fractional Fourier transform. These problems arise in wave propagation, but the proposed approach to these can also be applicable to other areas. We see this interpolation problem as the problem of determining the unknown signal values from the given samples within some tolerable error We formulate the problem as a linear system of equations and use the condition number as a measure of redundant ...
Fine resolution frequency estimation from three DFT samples: Case of windowed data
Candan, Çağatay (2015-09-01)
An efficient and low complexity frequency estimation method based on the discrete Fourier transform (DFT) samples is described. The suggested method can operate with an arbitrary window function in the absence or presence of zero-padding. The frequency estimation performance of the suggested method is shown to follow the Cramer-Rao bound closely without any error floor due to estimator bias, even at exceptionally high signal-to-noise-ratio (SNR) values.
MUTUAL COUPLING EFFECTS OF FINITE RECTANGULAR PHASED-ARRAYS
YAVUZ, H; BUYUKDURA, OM (1994-04-14)
A rigorous integral equation formulation for the analysis of a phased array of flangemounted waveguide apertures is given for a finite number of elements and nonuniform spacings. The resulting set of ihtegrd equations is reduced to a matrix equation called the coupling matrix which relates the coefficients of all the modes in all the waveguides to one another. The solution then yields the dominant mode reflection coefficient, coefficients of scattered modes and hence the field in each waveguide. The blockTo...
Galois structure of modular forms of even weight
Gurel, E. (Elsevier BV, 2009-10-01)
We calculate the equivariant Euler characteristics of powers of the canonical sheaf on certain modular curves over Z which have a tame action of a finite abelian group. As a consequence, we obtain information on the Galois module structure of modular forms of even weight having Fourier coefficients in certain ideals of rings of cyclotomic algebraic integers. (c) 2009 Elsevier Inc. All rights reserved.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
L. Akmandor and T. Nagashima, “Newton-Raphson solution of cryogenic homogenous two-phase flow in convergent-divergent nozzles,”
TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
, pp. 40–58, 1997, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64703.