Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A ROADMAP FOR BUILDING THERMAL MODELS FOR ALGAN/GAN HEMTS: SIMPLIFICATIONS AND BEYOND
Date
2016-07-14
Author
Azarifar, Mohammad
Donmezer, Nazli
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
90
views
0
downloads
Cite This
AlGaN/GaN based high electron mobility transistors (HEMTs) have been intensively used due to their high efficiency power switching and large current handling capabilities. However, the high power densities and localized heating in these devices form small, high temperature regions called hotspots. Analysis of heat removal from hotspots and temperature control of the entire device is necessary for the reliable design of HEMT devices. For accurate analysis of heat. transfer using thermal simulations in such devices with heat transfer occurring at different length scales, a roadmap is needed. For this purpose relative importance of different heat transfer modes in removing heat from devices with different substrate materials, operating at different power densities while different boundary conditions are analyzed using two and three-dimensional COMSOL Multiphysics simulations. Results give the relative importance of different parameters on the heat removal mechanism from devices and provide a roadmap for building simpler yet still accurate thermal models for AlGaN/GaN HEMTs and similar devices.
URI
https://hdl.handle.net/11511/64725
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Comparison of multi-phase interleaved boost converters with various coupled inductor topologies
Gökmen, Raşit; Bostancı, Emine; Department of Electrical and Electronics Engineering (2022-2)
Multi-phase interleaved boost converters are widely used in high power applications thanks to their high efficiency, high power density, increased output power capability and low input current ripple features. However, increasing the phase number results in an increase in the overall volume of the converter. In order to reduce the volume of the converter, inductors in multi-phase interleaved boost converters can be coupled. For a two-phase interleaved boost converter, loosely-coupled inductor (LCI), close-c...
A mathematical characterization and analysis of a feedforward circuit for CDMA applications
Coskun, AH; Demir, S (Institute of Electrical and Electronics Engineers (IEEE), 2003-03-01)
Feedforward is known to be one of the best,methods for power amplifier linearization due to its superior linearization performance albeit with relatively poor power efficiency. Here we present the derived closed-form expressions, which relate the main channel power and distortion products at the output of a simple feedforward circuitry to the circuit parameters. Consequently, a mathematical handy tool is achieved toward specifying the circuit parameters rapidly for optimum linearity performance and efficien...
Electrothermal Analysis of the Field-Plated AIGaN/GaN HEMTs with SiO2 Passivation
Kara, Dogacan; AKGÜN, FATMA NAZLI DÖNMEZER (2017-09-01)
AlGaN/GaN high electron mobility transistors (HEMTs) are widely used in high frequency and power applications of the space and military industries due to their high RF power densities. When operated in full capacity, reliability of GaN HEMTs drop significantly due to device degradation, electron collapse phenomena, and concentrated heating effects. Although significant research has been done to investigate the effects of passivation, field-plates on the device degradation and the electron collapse separatel...
Classification of Grid Connected Transformer less PV Inverters with a Focus on the Leakage Current Characteristics and Extension of Topology Families
Ozkan, Ziya; Hava, Ahmet Masum (2015-01-01)
Grid-connected transformerless photovoltaic (PV) inverters (TPVIs) are increasingly dominating the market due to their higher efficiency, lower cost, lighter weight, and reduced size when compared to their transformer based counterparts. However, due to the lack of galvanic isolation in the low voltage grid interconnections of these inverters, the PV systems become vulnerable to leakage currents flowing through the grounded star point of the distribution transformer, the earth, and the distributed parasitic...
An analytical method for the accurate and effective thermal modelling of AIGaN/GaN HEMTS
Mohammad, Azarifar; Dönmezer, Nazlı; Department of Mechanical Engineering (2017)
AlGaN/GaN high electron mobility transistors (HEMTs) are popular solid-state electronic devices used for high power and frequency applications. Concerns exist about their reliability and performance due to harsh self-heating effects, which makes it necessary to correctly characterize their thermal performance. In the past many researchers used thermal modelling approaches for thermal characterization since variety of limiting factors still exist in the experimental measurements. In this study diversities an...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Azarifar and N. Donmezer, “A ROADMAP FOR BUILDING THERMAL MODELS FOR ALGAN/GAN HEMTS: SIMPLIFICATIONS AND BEYOND,” 2016, p. 0, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64725.