Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A simple soil-structure interaction model
Date
2000-07-01
Author
Kocak, S
Mengi, Y
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
116
views
0
downloads
Cite This
A simple three-dimensional soil-structure interaction (SSI) model is proposed. First, a model is developed for a layered soil medium. In that model, the layered soil medium is divided into thin layers and each thin layer is represented by a parametric model. The parameters of this model are determined, in terms of the thickness and elastic properties of the sublayer, by matching, in frequency-wave number space, the actual dynamic stiffness matrices of the sublayer when the sublayer is thin and subjected to plane strain and out-of-plane deformations with those predicted by the parametric model developed in this study. Then, by adding the structure to soil model a three-dimensional finite element model is established for the soil-structure system. For the floors and footings of the structure, rigid diaphragm model is employed. Based on the proposed model, a general computer software is developed. Though the model accommodates both the static and dynamic interaction effects, the program is developed presently for static case only and will be extended to dynamic case in a future study. To assess the proposed SSI model, the model is applied to four examples, which are chosen to be static so that they can be analyzed by the developed program. The results are compared with those obtained by other methods. It is found that the proposed model can be used reliably in SSI analysis, and accommodates not only the interaction between soil and structure; but, also the interaction between footings. (C) 2000 Elsevier Science Inc. All rights reserved.
Subject Keywords
Layered soil medium
,
Parametric model
,
Dynamic stiffness matrix
,
Frequency
,
Wave number
,
Rigid diaphragm
,
Soil-structure interaction
,
Footing-footing interaction
URI
https://hdl.handle.net/11511/64926
Journal
APPLIED MATHEMATICAL MODELLING
DOI
https://doi.org/10.1016/s0307-904x(00)00006-8
Collections
Department of Engineering Sciences, Article
Suggestions
OpenMETU
Core
An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment
CANSIZ, F. Baris Can; Dal, Hüsnü; KALISKE, Michael (Informa UK Limited, 2015-08-18)
This contribution presents a novel constitutive model in order to simulate an orthotropic rate-dependent behaviour of the passive myocardium at finite strains. The motivation for the consideration of orthotropic viscous effects in a constitutive level lies in the disagreement between theoretical predictions and experimentally observed results. In view of experimental observations, the material is deemed as nearly incompressible, hyperelastic, orthotropic and viscous. The viscoelastic response is formulated ...
A modified applied element model for the simulation of plain concrete behaviour
Soysal, Berat Feyza; Arıcı, Yalın; Tuncay, Kağan (2022-08-01)
A modified applied element model to simulate the behaviour of plain concrete continuum structures including discrete cracking is proposed in this study. In the classical applied element model, Poisson effects are fully ignored. To remediate this issue, diagonal elements are introduced to include the Poisson effect, and the constitutive parameters are rigorously determined using the Cauchy-Born rule and the hyper-elastic theory. The formulation is validated for linear elastic problems and the consistency and...
A generative model for multi class object recognition and detection
Ulusoy, İlkay (2006-01-01)
In this study, a generative type probabilistic model is proposed for object recognition. This model is trained by weakly labelled images and performs classification and detection at the same time. When test on highly challenging data sets, the model performs good for both tasks (classification and detection).
A modulus gradient model for an axially loaded inhomogeneous elastic rod
Gulasuk, Hasan; Göktepe, Serdar; Gürses, Ercan (2018-08-01)
A new gradient elasticity formulation is proposed for a one-dimensional linear elastic inhomogeneous rod. In the new formulation, similar to the differential relation between the local strain and the gradient enhanced strain in the classical models of gradient elasticity, a differential relation is proposed for the Young's modulus. Analytical and finite element solutions of the proposed formulation are derived. Results of the proposed model are compared with a classical model of gradient elasticity for a mo...
A projection based variational multiscale method for a fluid–fluid interaction problem
Ağgül, Mustafa ; Eroğlu, Fatma Güler ; Kaya Merdan, Songül; Labovsky, Alexer E. (Elsevier BV, 2020-06-15)
The proposed method aims to approximate a solution of a fluid–fluid interaction problem in case of low viscosities. The nonlinear interface condition on the joint boundary allows for this problem to be viewed as a simplified version of the atmosphere–ocean coupling. Thus, the proposed method should be viewed as potentially applicable to air–sea coupled flows in turbulent regime. The method consists of two key ingredients. The geometric averaging approach is used for efficient and stable decoupling of the pr...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Kocak and Y. Mengi, “A simple soil-structure interaction model,”
APPLIED MATHEMATICAL MODELLING
, pp. 607–635, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64926.