Design and characterization of a resonator-based metamaterial and its sensor application using microstrip technology

Sabah, Cumali
Nesimoglu, Tayfun
Design of a metamaterial based on an S-shaped resonator surrounded by a ground frame and excited by using a feeding transmission line on microstrip technology is presented. Since the resonator, ground frame, and its excitation mechanism are all realized on a microstrip, its characterization can be carried out using common laboratory equipment without needing any waveguide components or plane-wave-illumination techniques. The structure presented here may be realized on any microstrip and does not require special materials. The resonator and ground frame are both on the same side of the microstrip, thus the proposed topology may also be populated with active and passive microwave components, and hybrid active, passive, or reconfigurable microwave circuits may be realized. In metamaterial designs that require plane wave illumination, usually many numbers of periodic unit cells are needed; however, in our design, only one cell is capable of achieving metamaterial properties. The constitutive parameters of the metamaterial are retrieved and compared to demonstrate the agreement between simulations and measurements. The proposed topology is also demonstrated in a sensor application, where simulated and measured results agree well. Thus, it can be realized using standard microwave technology and used for numerous applications where metamaterial properties are needed. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)


Performance of M-ary pulse position modulation for aeronautical uplink communications in an atmospheric turbulent medium
Ata, Yalcin; Baykal, Yahya; Gokce, Muhsin Caner (The Optical Society, 2019-10-01)
This paper discusses the bit-error-rate (BER) performance of an aeronautical uplink optical wireless communication system (OWCS) when a Gaussian beam is employed and the M-ary pulse position modulation technique is used in an atmospheric turbulent medium. Weak turbulence conditions and log-normal distribution are utilized. The Gaussian beam is assumed to propagate on a slant path, the transmitter being ground-based, and the airborne receiver is on-axis positioned. Variations of BER are obtained against the ...
High-Q Slot-Mode Photonic Crystal Nanobeam Cavity Biosensor With Optomechanically Enhanced Sensitivity
Erdil, Mertcan; Kocaman, Serdar (Institute of Electrical and Electronics Engineers (IEEE), 2019-03-01)
A biosensor design based on a photonic crystal nanobeam cavity with an optomechanical positive feedback mechanism is proposed. Design of the cavity and optomechanical sensitivity enhancement method are numerically analyzed and the results show that fourfold improvement is possible without any degradation of the Q-factor.
Efficient computation of 2D point-spread functions for diffractive lenses
Ayazgok, Suleyman; Öktem, Sevinç Figen (The Optical Society, 2020-01-10)
Diffractive lenses, such as Fresnel zone plates, photon sieves, and their modified versions, have been of significant recent interest in high-resolution imaging applications. As the advent of diffractive lens systems with different configurations expands, the fast and accurate simulation of these systems becomes crucial for both the design and image reconstruction tasks. Here we present a fast and accurate method for computing the 2D point-spread function (PSF) of an arbitrary diffractive lens. The method i...
Design and construction of an experimental apparatus for the interferometric measurement of micrometer level clearances
Yıldırım, Murat; Dursunkaya, Zafer; Department of Mechanical Engineering (2009)
In this study a fiber optic interferometer (FOI) was designed and constructed to measure micron level clearances occurring in piston cylinder arrangements. A Cartesian model of the piston cylinder assembly is manufactured and lateral motion and vertical displacement are generated via a step motor, and micrometers, respectively. Clearance measurements are conducted in air and also in a lubricant. The range of vertical displacements is kept between 0-50 μm, and the lateral motion is 13.5 mm. The effect of the...
A 2D Slotted Rod Type PhC Cavity Inertial Sensor Design for Impact Sensing
Orsel, Ogulcan Emre; ERDİL, MERTCAN; Kocaman, Serdar (Institute of Electrical and Electronics Engineers (IEEE), 2020-02-01)
A tunable 2D rod type Si Photonic Crystal cavity based impact sensing configuration is proposed and numerically analyzed. The cavity is sandwiched by perfect electric conductor (PEC) boundaries in order to provide out-of-plane light confinement. An on-purpose air slot is introduced between the Si rods and top PEC plate moving the light confinement into the slotted region and making the cavity highly responsive to the displacement of top PEC boundary. Optomechanical coupling strength is calculated to be on t...
Citation Formats
C. Sabah and T. Nesimoglu, “Design and characterization of a resonator-based metamaterial and its sensor application using microstrip technology,” OPTICAL ENGINEERING, pp. 0–0, 2016, Accessed: 00, 2020. [Online]. Available: