Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
STRESS-ANALYSIS IN WELDED BUTT JOINTS
Date
1992-09-25
Author
YAHSI, OS
AYDIN, E
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
57
views
0
downloads
Cite This
Subject Keywords
Mechanics
,
Materials Science, Characterization & Testing
URI
https://hdl.handle.net/11511/65358
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Stress intensity factor and compliance solutions for a single edge notched specimen with clamped ends
Blatt, Drew; John, Reji; Çöker, Demirkan (Elsevier BV, 1994-01-01)
A single edge notched geometry [SE(T)] with clamped ends is well suited for fracture toughness and fatigue crack growth testing of composites. Closed form expressions for the stress intensity factor and the compliance for an SE(T) with clamped ends were developed using finite element analysis. Using these expressions, automated crack growth tests were conducted on a monolithic Ti-1100 and a [90]8 SCS-6/Ti-24Al-l 1Nb composite. The crack growth behavior, characterized in terms of the crack growth rate versus...
Non-Destructive Testing Committee of the Turkish Chamber of Metallurgical Engineers
Gür, Cemil Hakan (1998-09-01)
Edge cracks in a transversely isotropic hollow cylinder
Kadıoğlu, Fevzi Suat (Elsevier BV, 2005-09-01)
The analytical solution for the linear elastic, axisymmetric problem of inner and outer edge cracks in a transversely isotropic infinitely long hollow cylinder is considered. The z = 0 plane on which the crack lies is a plane of symmetry. The loading is uniform crack surface pressure. The mixed boundary value problem is reduced to a singular integral equation where the unknown is the derivative of the crack surface displacement. An asymptotic analysis is done to derive the generalized Cauchy kernel associat...
Crack propagation in a commercial steel
Bilir , Oğuz Gürkan (Springer Science and Business Media LLC, 1988-5)
In this work, the fatigue crack propagation behaviour of commercial steel sheet specimens containing a circular hole, under uniaxial loading conditions at room temperature was investigated. The experimental data have been analysed in terms of variability of material constants. The results were presented in the form of power relationship between the crack growth rate and the stress intensity factor range.
Excessive damage increase in dual phase steels under high strain rates and temperatures
Cobanoglu, Merve; Ertan, Rasim K.; Şimşir, Caner; Efe, Mert (SAGE Publications, 2020-09-01)
Damage formation in dual phase steels is a complex process and it may be sensitive to the deformation conditions and mechanisms. In this study, the damage parameter is measured and compared under quasi-static and industrial forming conditions (temperatures: 25 vs 200, 300 degrees C and strain rates: 10(-3)vs 10 s(-1)) for DP590 and DP800 steels. Resonance frequency and ultrasonic sound velocity techniques are utilized for the measurements to test the effectiveness and validity of each technique. At a given ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. YAHSI and E. AYDIN, “STRESS-ANALYSIS IN WELDED BUTT JOINTS,” 1992, p. 971, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65358.