Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
MTF Measurement of a SWIR Imaging Telescope Using Star Test Images
Date
2012-04-29
Author
Yilmaz, Ozgur
Selimoglu, Ozgur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
67
views
0
downloads
Cite This
MTF is the final and decisive parameter determining the image quality of optical imaging systems. To measure the MTF of a large-mirror telescope in a laboratory, an expensive collimator is necessary to make a collimated beam from a point or knife-edge source. Star-test is an old and traditional method giving some clues about wavefront error. In this study, we used the star-test to measure the MTF of an imaging telescope. We found the Line Spread Function (LSF) of a star on a line detector, and then derived the MTF using Fourier Transform of LSF. LSF is generated from the intensity distribution on the detector, by using different mathematical curve fitting methods. It is found that our telescope has an MTF greater than % 15 over the all fields at 20 lp/mm, which is the Nyquist frequency of 25 mu detector. We showed that a relatively large telescope (similar to 15 cm in diameter) can be built and tested without using expensive instruments such as collimator and interferometer. Also our telescope can be used with a 20 mu detector safely, considering % 10 MTF as the limiting case.
Subject Keywords
SWIR (ShortWave InfraRed)
,
MTF (Modulation Transfer Function)
,
Star-test
,
LSF
URI
https://hdl.handle.net/11511/65755
DOI
https://doi.org/10.1063/1.4751581
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Compressed Sensing Based Hyperspectral Unmixing
Albayrak, R. Tufan; GÜRBÜZ, Ali Cafer; Gunyel, Bertan (2014-04-25)
In hyperspectral images the measured spectra for each pixel can be modeled as convex combination of small number of endmember spectra. Since the measured structure contains only a few of possible responses out of possibly many materials sparsity based convex optimization techniques or compressive sensing can be used for hyperspectral unmixing. In this work varying sparsity based techniques are tested for hyperspectral unmixing problem. Performance analysis of these techniques on sparsity level and measureme...
Contrast Enhancement of Microscopy Images Using Image Phase Information
Çakır, Serhat; Atalay, Rengül; ÇETİN, AHMET ENİS (2018-01-01)
Contrast enhancement is an important preprocessing step for the analysis of microscopy images. The main aim of contrast enhancement techniques is to increase the visibility of the cell structures and organelles by modifying the spatial characteristics of the image. In this paper, phase information-based contrast enhancement framework is proposed to overcome the limitations of existing image enhancement techniques. Inspired by the groundbreaking design of the phase contrast microscopy (PCM), the proposed ima...
Sensitivity and error analysis of a differential rectification method for CCD frame cameras and pushbroom scanners
Bettemir, Önder Halis; Karslıoğlu, Mahmut Onur; Department of Civil Engineering (2006)
In this thesis, sensitivity and error analysis of a differential rectification method were performed by using digital images taken by a frame camera onboard BILSAT and pushbroom scanner on ASTER. Three methods were implemented for Sensitivity and Uncertainty analysis: Monte Carlo, covariance analysis and FAST (Fourier Amplitude Sensitivity Test). A parameter estimation procedure was carried out on the basis of so called Mixed Model extended by some suitable additional regularization parameters to stabilize ...
Implement of three segmentation algorithms for CT images of torso
Öz, Sinan; Serinağaoğlu Doğrusöz, Yeşim; Department of Electrical and Electronics Engineering (2011)
Many practical applications in the field of medical image processing require valid and reliable segmentation of images. In this dissertation, we propose three different semi-automatic segmentation frameworks for 2D-upper torso medical images to construct 3D geometric model of the torso structures. In the first framework, an extended version of the Otsu’s method for three level thresholding and a recursive connected component algorithm are combined. The segmentation process is accomplished by first using Ext...
SNR CALCULATION METHOD FOR REMOTE SENSING SATELLITE IMAGING SYSTEMS
Turkmenoglu, Mustafa; Sengul, Orhan; Demircioglu, Erdem (2013-06-01)
Signal to Noise Ratio (SNR) is a metric used to link the image quality and radiometric performance of the remote sensing imaging systems. It is one of the remote sensing imaging system's design parameters that represents the image quality. SNR calculation and analysis should be carried out at design phase of remote sensing imaging systems. This calculation and analysis are crucial for confirmation of design success. It is important to show that the light flux reaching the sensor and the generated electrons ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Yilmaz and O. Selimoglu, “MTF Measurement of a SWIR Imaging Telescope Using Star Test Images,” 2012, vol. 1476, p. 131, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65755.