Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Ensembling Brain Regions for Brain Decoding
Date
2015-08-29
Author
Alkan, Sarper
Yarman-Vural, Fatos T.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
48
views
0
downloads
Cite This
In this study, we propose a new method which ensembles the brain regions for brain decoding. The ensemble is generated by clustering the fMRI images recorded during an experimental set-up which measures the cognitive states associated to semantic categories. Initially, voxel clusters are formed by using hierarchical agglomerative clustering with correlation as the similarity metric. Then, for each voxel cluster, a support vector machine (SVM) classifier is trained to estimate the class-posteriori probabilities. Lastly, the class-posteriori probabilities are ensembled by concatenating them under the same feature space, which are then used to train a meta-layer SVM for the final classification of the cognitive states.
Subject Keywords
Mind
,
Voxel pattern-analysis
,
Representations
,
Objects
URI
https://hdl.handle.net/11511/66015
Collections
Graduate School of Informatics, Conference / Seminar
Suggestions
OpenMETU
Core
Encoding Multi-Resolution Brain Networks Using Unsupervised Deep Learning
Rahnama, Arash; Alchihabi, Abdullah; Gupta, Vijay; Antsaklis, Panos J.; Yarman Vural, Fatoş Tunay (2017-10-25)
The main goal of this study is to extract a set of brain networks in multiple time-resolutions to analyze the connectivity patterns among the anatomic regions for a given cognitive task. We suggest a deep architecture which learns the natural groupings of the connectivity patterns of human brain in multiple time-resolutions. The suggested architecture is tested on task data set of Human Connectome Project (HCP) where we extract multi-resolution networks, each of which corresponds to a cognitive task. At the...
Bridging Brain and Educational Sciences: An Optical Brain Imaging Study of Visuospatial Reasoning
Çakır, Murat Perit; Izzetoglu, Meltem; Shewokis, Patricia A.; Izzetoglu, Kurtulus; Onaral, Banu (2011-10-22)
In this paper we present an experimental study where we investigated neural correlates of visuospatial reasoning during math problem solving in a computer-based environment to exemplify the potential for conducting interdisciplinary research that incorporates insights from educational research and cognitive neuroscience. Functional near-infrared spectroscopy (fNIRS) technology is used to measure changes in blood oxygenation in the dorsolateral and inferior prefrontal cortex while subjects attempt to solve t...
Important issues for brain connectivity modelling by discrete dynamic bayesian networks.
Geduk, Salih; Ulusoy, İlkay; Department of Electrical and Electronics Engineering (2020)
To understand the underlying neural mechanisms in the brain, effective connectivity among brain regions is important. Discrete Dynamic Bayesian Networks (dDBN) have been proposed to model the brain’s effective connectivity, due to its nonlinear and probabilistic nature. In modeling brain connectivity using discrete dynamic Bayesian network (dDBN), we need to make sure that the model accurately reflects the internal brain structure in spite of limited neuroimaging data. Based on the fact that there are many ...
FUNCTIONAL NETWORKS OF ANATOMIC BRAIN REGIONS
Velioglu, Burak; Aksan, Emre; Onal, Itir; Firat, Orhan; Ozay, Mete; Yarman Vural, Fatoş Tunay (2014-08-20)
In this study, we propose a new approach to construct a two-level functional brain network. The nodes of the first-level network are the voxels of the functional Magnetic Resonance Images (tMRI) recorded during an object recognition task. The nodes of the network at the second-level are the anatomic regions of the brain. The arcs of the first level are estimated by a linear regression equation for the meshes formed around each voxel. Neighbors of each voxel are determined by using a functional similarity me...
Learning transferability of cognitive tasks by graph generation for brain decoding
Coşkun, Bilgin; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2021-12-10)
Brain decoding involves analyzing the cognitive states of human brain by using some statistical techniques in order to understand the relations among the cognitive states, based on neuroimaging data. A very powerful tool to acquire the brain data is functional magnetic resonance images (fMRI), which generates three-dimensional brain volume at each time instant, while a subject performs a cognitive task involving social activities, emotion processing, game playing, memory etc. However, it is very difficult a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Alkan and F. T. Yarman-Vural, “Ensembling Brain Regions for Brain Decoding,” 2015, p. 2948, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66015.