Performance of a large plate on a group of stone columns

1997-09-12
Akdogan, M
Ergun, U
Erol, O
Large size rigid reinforced concrete plate-load test data is evaluated to determine the performance of stone columns proposed for the foundation of a power plant. Soil profile consists of a top soil of sands, silts and transition soils up to a depth of 5.5 m - 6.5 m, and below coral limestone exists. Soil investigations indicated that the soil in the upper horizon has low shear strength and relatively high compressibility. Also, a large size zone load test, at an elevation approximately 1 m above the proposed foundation level was conducted using a 5 m(2) plate and it was observed that shear failure and excessive settlements occurred before reaching the design load. Hence, ground improvement technique by stone columns was selected to upgrade the foundation soil. The stiffnesses of improved and unimproved soils were compared. Settlement reduction and stress concentration ratios were also evaluated as a function of applied normal load.

Suggestions

Evaluation of shear wall indexes for reinforced concrete buildings
Soydaş, Ozan; Yakut, Ahmet; Department of Civil Engineering (2009)
An analytical study was carried out to evaluate shear wall indexes for low to mid-rise reinforced concrete structures. The aim of this study was to evaluate the effect of different shear wall ratios on performance of buildings to be utilized in the preliminary assessment and design stages of reinforced concrete buildings with shear walls. In order to achieve this aim, forty five 3D building models with two, five and eight storeys having different wall ratios were generated. Linearly elastic and nonlinear st...
Response parameters that control the service, safety and collapse performances of a 253 m tall concrete core wall building in Istanbul
Budak, Erhan; Sucuoğlu, Haluk; Çelik, Ozan Cem (2022-10-01)
Seismic performance of a 253 m tall reinforced concrete core wall building constructed in Istanbul, designed according to performance-based seismic design principles, is assessed for determining the response parameters that control the serviceability, safety and collapse performance limit states. Serviceability performance is evaluated under the 50-year wind and 43-year earthquake whereas safety performance is assessed under the 2475-year earthquake. Collapse performance is elaborated through incremental dy...
Simulation of the in-plane structural behavior of unreinforced masonry walls and buildings using DEM
Pulatsu, Bora; Erdogmus, Ece; Lourenço, Paulo B.; Lemos, Jose V.; Tuncay, Kağan (2020-10-01)
In this study, a novel computational modeling strategy is proposed to estimate the lateral load capacity and behavior of unreinforced masonry (URM) structures. All commonly noted failure mechanisms are captured via the proposed modeling strategy using the discrete element method (DEM) in three-dimensions (3D). Masonry walls are represented as a system of elastic discrete blocks, where the nodal velocities are evaluated by integrating the equations of motion using the central difference method. Then, the mec...
Vulnerability assessment of reinforced concrete moment resisting frame buildings
Erduran, Emrah; Yakut, Ahmet (2007-04-01)
A detailed seismic performance assessment procedure has been developed for reinforced concrete (RC) frame buildings with masonry infill walls. The procedure is based on member damage functions, in terms of interstory drift ratios. These functions are developed for the primary components, namely, columns, beams, and infill walls. For developing these functions, analytical investigations to determine the influence of several parameters on the damageability of components were combined with experimental data. A...
Analytical study on seismic retrofitting of reinforced concrete buildings using steel braces with shear link
Durucan, Cengizhan; Dicleli, Murat (2010-10-01)
This paper is focused on a proposed seismic retrofitting system (PRS) configured to upgrade the performance of seismically vulnerable reinforced concrete (RC) buildings. The PRS is composed of a rectangular steel housing frame with chevron braces and a yielding shear link connected between the braces and the frame. The retrofitting system is installed within the bays of an RC building frame to enhance the stiffness, strength and ductility of the structure. The PRS and a conventional retrofitting system usin...
Citation Formats
M. Akdogan, U. Ergun, and O. Erol, “Performance of a large plate on a group of stone columns,” 1997, p. 1557, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66189.