The Possibility of Inflation in Asymptotically Safe Gravity

Hong, Sungwook E.
Lee, Young Jae
Zoe, Heeseung
We examine the inflationary modes in the cubic curvature theories in the context of asymptotically safe gravity. On the phase space of the Hubble parameter, there exists a critical point which corresponds to the slow-roll inflation in Einstein frame. Most of the e-foldings are attained around the critical point for each inflationary trajectories. If the coupling constants g(i) have the parametric relations generated as the power of the relative energy scale of inflation H-0 to the cutoff., a successful inflation with more than 60 e-foldings occurs near the critical point.


The momentum four-vector in Brans-Dicke wormholes
Pirinccioglu, Nurettin; Acikgoez, Irfan; Salti, Mustafa (Springer Science and Business Media LLC, 2007-05-01)
In this work, in order to compute energy and momentum distributions (due to matter plus fields including gravitation) associated with the Brans-Dicke wormhole solutions we consider Moller's energy-momentum complexes both in general relativity and the teleparallel gravity, and the Einstein energy-momentum formulation in general relativity. We find exactly the same energy and momentum in three of the formulations. The results obtained in teleparallel gravity is also independent of the teleparallel dimensionle...
Gravitating instantons in 3 dimensions
Ferstl, A; Tekin, Bayram; Weir, V (2000-09-15)
We study the Einstein-Chern-Simons gravity coupled to Yang-Mills-Higgs theory in three-dimensional Euclidean space with a cosmological constant. The classical equations reduce to Bogomol'nyi type first order equations in curved space. There are BPS type gauge theory instanton (monopole) solutions of finite action in a gravitational instanton which itself has a finite action. We also discuss gauge theory instantons in the vacuum (zero action) AdS space. In addition we point out to some exact solutions which ...
The Lukash plane-wave attractor and relative energy
Korunur, Murat; Salti, Mustafa; Aydogdu, Oktay (World Scientific Pub Co Pte Lt, 2007-07-10)
We study energy distribution in the context of teleparallel theory of gravity, due to matter and fields including gravitation, of the universe based on the plane-wave Bianchi VII(delta) spacetimes described by the Lukash metric. For this calculation, we consider the teleparallel gravity analogs of the energy momentum formulations of Einstein, Bergmann-Thomson and Landau-Lifshitz. We find that Einstein and Bergmann-Thomson prescriptions agree with each other and give the same results for the energy distribut...
On the Moller energy associated with black holes
Salti, Mustafa; Aydogdu, Oktay (Springer Science and Business Media LLC, 2006-12-01)
In this paper, we consider both Einstein's theory of general relativity and the teleparallel gravity (the tetrad theory of gravitation) analogs of the energy-momentum definition of Moller in order to explicitly evaluate the energy distribution (due to matter and fields including gravity) associated with a general black hole model which includes several well-known black holes. To calculate the special cases of energy distribution, here we consider eight different types of black hole models such as anti-de Si...
The momentum 4-vector imparted by gravitational waves in Bianchi-type metrics
Havare, A; Korunur, M; Salti, M (Springer Science and Business Media LLC, 2006-01-01)
Considering the MOller, Weinberg and Qadir-Sharif's definitions in general relativity, we find the momentum 4-vector of the closed universe based on the Bianchi-type metrics. The momentum 4-vector (due to matter plus fields) is found to be zero. This result supports the viewpoints of Albrow and Tryon and extends the previous works by Cooperstock-Israelit, Rosen, Johri et al., Banerjee-Sen and Vargas who investigated the problem of the energy in Friedmann-Robertson-Walker universe and SaltI-Havare who studie...
Citation Formats
S. E. Hong, Y. J. Lee, and H. Zoe, “The Possibility of Inflation in Asymptotically Safe Gravity,” INTERNATIONAL JOURNAL OF MODERN PHYSICS D, pp. 0–0, 2012, Accessed: 00, 2020. [Online]. Available: