Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
A viscoelastic sphere model for the representation of plantar soft tissue during simulations
Date
1998-09-01
Author
Guler, HC
Berme, N
Simon, SR
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Simulations of human body during locomotion require a realistic representation of the foot which is the major interacting part of the body with the environment. Most simulation models consider the foot to be a rigid link, and impose unrealistic kinematic conditions. This study utilizes a viscoelastic sphere model with realistic properties, which can be used to represent the plantar surface of the foot during locomotion. The mechanical properties of the sphere are identified using experimental data on heel pads (Valiant, 1984). To check the validity of the model the results of the experimental study are reproduced by simulating the impact tests. Sensitivity analyses of the model parameters are carried out. The model is found to be insensitive to variations in stiffness and damping properties. The change in the thickness of the soft tissue, however, affected the maximum force of deformation proportionally. ii symmetrical pressure distribution for the sphere during impact is calculated. It is concluded that the viscoelastic sphere model, presented here, can be incorporated into a foot model to represent the plantar surface of the foot.
Subject Keywords
Foot model
,
Heel pad
URI
https://hdl.handle.net/11511/66684
Journal
JOURNAL OF BIOMECHANICS
DOI
https://doi.org/10.1016/s0021-9290(98)00085-2
Collections
Department of Mechanical Engineering, Article