Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
3-DIMENSIONAL APPLICATION OF THE JOHNSON-KING TURBULENCE MODEL FOR A BOUNDARY-LAYER DIRECT METHOD
Date
1991-01-01
Author
KAVSAOGLU, MS
KAYNAK, U
VANDALSEM, WR
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
8
views
0
downloads
The Johnson-King turbulence model [1; AIAA Paper 84-0175 (1984)] as extended to three-dimensional flows was evaluated using a finite-difference boundary-layer direct method. Calculations were compared against the experimental data of the well-known van den Berg-Elsenaar [2; Report NLR-TR-72092U (1972)] incompressible flow over an infinite swept-wing, as well as with some other boundary-layer methods. The Johnson-King turbulence model, which includes the non-equilibrium effects in a developing turbulent boundary layer, was found to significantly improve the predictive quality of a direct boundary-layer method. The improvement was especially visible in the computations with increased three-dimensionality of the mean flow, larger integral parameters and decreasing eddy-viscosity and shear-stress magnitudes in the streamwise direction; all in better agreement with the experiment than simple mixing-length-based methods.
Subject Keywords
General Engineering
,
General Computer Science
URI
https://hdl.handle.net/11511/66713
Journal
COMPUTERS & FLUIDS
DOI
https://doi.org/10.1016/0045-7930(91)90061-l
Collections
Department of Aerospace Engineering, Article