Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design Strategies for Ratiometric Chemosensors: Modulation of Excitation Energy Transfer at the Energy Donor Site
Download
index.pdf
Date
2009-07-01
Author
Guliyev, Ruslan
Coskun, Ali
AKKAYA, Engin Umut
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
44
views
0
downloads
Cite This
Excitation energy transfer, when coupled to an ion-modulated ICT chromophore, creates novel opportunities in sensing. The direction of energy transfer and the point of ICT modulation can be varied as desired. In our previous work, we have shown that energy transfer efficiency between two energetically coupled fluorophores will be altered by the metal ion binding to the ICT chromophore carrying a ligand. There are two beneficial results: increased pseudo-Stokes shift and expanded dynamic range. Here, we explored the consequences of the modulation of energy transfer efficiency at the energy donor site, in a molecular design which has an ICT type metal ion-sensitive chromophore placed as the energy donor in the dyad. Clear advantages emerge compared to the acceptor site modulation: unaltered emission wavelength in the red end of the visible spectrum, while keeping a large Stokes shift and the ratiometric character.
Subject Keywords
Fluorescent chemosensor
,
Electron-transfer
,
Highly efficint
,
Molecular logic
,
Bodıpy dyes
,
Ion
,
Emission
,
Excimer
,
Receptors
,
Energy transfer
,
Sensors
,
lons
,
Chromophores
,
Quantum mechanics
URI
https://hdl.handle.net/11511/66759
Journal
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
DOI
https://doi.org/10.1021/ja902584a
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Concurrent operation of wireless power transfer based contactless slip ring and motor drive system with a single converter
Ayaz, Enes; Keysan, Ozan; Department of Electrical and Electronics Engineering (2022-9)
This thesis presents a novel approach for concurrent power transfer to wired and wireless systems using a single inverter. This proposed approach fits a cost-effective solution to wireless power transfer (WPT) systems used in contactless slip rings (CSR) applications such as sensors, radars, or wind-turbine pitch controls. In conventional systems, there are two separate converters: one is for the motor drive, and the other is for the WPT system. It is proposed that the switching harmonics of the motor drive...
Empirical Proof of Concept for TE Generation in Mobile Computers
Denker, Reha; Muhtaroglu, Ali; Külah, Haluk (2012-12-05)
Thermoelectric (TE) module integration into a mobile computer has been experimentally investigated in this paper for its energy harvesting opportunities. For this purpose, a detailed Finite Element Analysis (FEA) model was constructed for thermal simulations. The model outputs were then correlated with the thermal validation results of the target system. A suitable "warm spot" has been selected, based on the FEA model, to integrate a commercial TE micro-module inside the system with minimum or no notable im...
Structural properties of ZnO binary alloy nanosystems: molecular-dynamics simulations
Kılıç, Mehmet Emin; Erkoç, Şakir; Department of Physics (2015)
ZnO nanostructures revealed novel implementations in optoelectronics, sensors, transducers and biomedical sciences. There are different shapes of ZnO nanostructures such as zero dimensional-0D (quantum dots, nanoparticles), one dimensional-1D (nanorods, nanowires, nanotubes) and two dimensional-2D (nanosheets) and their properties have been experimentally prepared and investigated. Thus, ZnO is one of the richest family of nanostructures among all materials, both in structures and in properties. In this the...
Optical design of TCO-free interconnecting layer for all-perovskite tandem solar cells
Koc, Mehmet; Ameri, Mohsen; Yerci, Selçuk (2021-07-12)
Organic-inorganic hybrid perovskite materials are excellent candidates as light absorbers in tandem solar cells with advantages of tunable bandgaps, high absorption coefficients, and facile and low-cost fabrication processes. As the key component of a tandem structure, the interconnecting layer (ICL) requires optical transparency, efficient carrier recombination, and facile up-scalability. To demonstrate the feasibility of an efficient TCO-free ICL in all-perovskite tandem solar cell devices, we have perfor...
QUANTUM-CLASSICAL MIXED-MODE ANALYSIS OF NONLINEARLY COUPLED OSCILLATORS - A TIME-DEPENDENT SELF-CONSISTENT-FIELD APPROACH
YURTSEVER, E; BRICKMANN, J (1992-02-01)
A two-dimensional vibrational system with a strong nonlinear coupling is studied using a quantum-classical mixed mode self-consistent-field approach. The classical equations of motion as well as the time-dependent Schrodinger equation are solved for respective modes under the influence of the average fields generated by the other modes. This vibrational system was previously shown to be chaotic under classical mechanical treatment but quantum mechanical observations pointed out to highly regular behaviour...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. Guliyev, A. Coskun, and E. U. AKKAYA, “Design Strategies for Ratiometric Chemosensors: Modulation of Excitation Energy Transfer at the Energy Donor Site,”
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
, pp. 9007–9013, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66759.