Design Strategies for Ratiometric Chemosensors: Modulation of Excitation Energy Transfer at the Energy Donor Site

Guliyev, Ruslan
Coskun, Ali
AKKAYA, Engin Umut
Excitation energy transfer, when coupled to an ion-modulated ICT chromophore, creates novel opportunities in sensing. The direction of energy transfer and the point of ICT modulation can be varied as desired. In our previous work, we have shown that energy transfer efficiency between two energetically coupled fluorophores will be altered by the metal ion binding to the ICT chromophore carrying a ligand. There are two beneficial results: increased pseudo-Stokes shift and expanded dynamic range. Here, we explored the consequences of the modulation of energy transfer efficiency at the energy donor site, in a molecular design which has an ICT type metal ion-sensitive chromophore placed as the energy donor in the dyad. Clear advantages emerge compared to the acceptor site modulation: unaltered emission wavelength in the red end of the visible spectrum, while keeping a large Stokes shift and the ratiometric character.


Concurrent operation of wireless power transfer based contactless slip ring and motor drive system with a single converter
Ayaz, Enes; Keysan, Ozan; Department of Electrical and Electronics Engineering (2022-9)
This thesis presents a novel approach for concurrent power transfer to wired and wireless systems using a single inverter. This proposed approach fits a cost-effective solution to wireless power transfer (WPT) systems used in contactless slip rings (CSR) applications such as sensors, radars, or wind-turbine pitch controls. In conventional systems, there are two separate converters: one is for the motor drive, and the other is for the WPT system. It is proposed that the switching harmonics of the motor drive...
Empirical Proof of Concept for TE Generation in Mobile Computers
Denker, Reha; Muhtaroglu, Ali; Külah, Haluk (2012-12-05)
Thermoelectric (TE) module integration into a mobile computer has been experimentally investigated in this paper for its energy harvesting opportunities. For this purpose, a detailed Finite Element Analysis (FEA) model was constructed for thermal simulations. The model outputs were then correlated with the thermal validation results of the target system. A suitable "warm spot" has been selected, based on the FEA model, to integrate a commercial TE micro-module inside the system with minimum or no notable im...
Structural properties of ZnO binary alloy nanosystems: molecular-dynamics simulations
Kılıç, Mehmet Emin; Erkoç, Şakir; Department of Physics (2015)
ZnO nanostructures revealed novel implementations in optoelectronics, sensors, transducers and biomedical sciences. There are different shapes of ZnO nanostructures such as zero dimensional-0D (quantum dots, nanoparticles), one dimensional-1D (nanorods, nanowires, nanotubes) and two dimensional-2D (nanosheets) and their properties have been experimentally prepared and investigated. Thus, ZnO is one of the richest family of nanostructures among all materials, both in structures and in properties. In this the...
Optical design of TCO-free interconnecting layer for all-perovskite tandem solar cells
Koc, Mehmet; Ameri, Mohsen; Yerci, Selçuk (2021-07-12)
Organic-inorganic hybrid perovskite materials are excellent candidates as light absorbers in tandem solar cells with advantages of tunable bandgaps, high absorption coefficients, and facile and low-cost fabrication processes. As the key component of a tandem structure, the interconnecting layer (ICL) requires optical transparency, efficient carrier recombination, and facile up-scalability. To demonstrate the feasibility of an efficient TCO-free ICL in all-perovskite tandem solar cell devices, we have perfor...
A two-dimensional vibrational system with a strong nonlinear coupling is studied using a quantum-classical mixed mode self-consistent-field approach. The classical equations of motion as well as the time-dependent Schrodinger equation are solved for respective modes under the influence of the average fields generated by the other modes. This vibrational system was previously shown to be chaotic under classical mechanical treatment but quantum mechanical observations pointed out to highly regular behaviour...
Citation Formats
R. Guliyev, A. Coskun, and E. U. AKKAYA, “Design Strategies for Ratiometric Chemosensors: Modulation of Excitation Energy Transfer at the Energy Donor Site,” JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, pp. 9007–9013, 2009, Accessed: 00, 2020. [Online]. Available: