Threshold Broadcast Encryption with reduced complexity

Download
2007-11-09
Kaskaloglu, Kerem
Kaya, Kamer
Selcuk, Ali Aydin
Threshold Broadcast Encryption (TBE) is a promising extension of threshold cryptography with its advantages over traditional threshold cryptosystems, such as eliminating the need of a trusted party, the ability of setting up the system by individual users independently and the ability of choosing the threshold parameter and the group of privileged receivers at the time of encryption. An ElGamal-based solution for TBE was proposed by Ghodosi et al. In this paper, we propose an improved ElGamal-based TBE scheme with reduced transmission cost.

Suggestions

High speed VLSI implementation of the Rijndael Encryption Algorithm
Sever, Refik; Aşkar, Murat; Department of Electrical and Electronics Engineering (2003)
This thesis study presents a high speed VLSI implementation of the Rijndael Encryption Algorithm, which is selected to be the new Advanced Encryption Standard (AES) Algorithm. Both the encryption and the decryption algorithms of Rijndael are implemented as a single ASIC. Although data size is fixed to 128 bits in the AES, our implementation supports all the data sizes of the original Rijndael Algorithm. The core is optimised for both area and speed. Using 149K gates in a 0.35-æm standard CMOS process, 132 M...
A Randomness test based on postulate r-2 on the number of runs
Şeker, Okan; Doğanaksoy, Ali; Department of Cryptography (2014)
Random values are considered as an indispensable part of cryptography, since they are necessary for almost all cryptographic protocols. Most importantly, key generation is done by random values and key itself should behave like a random value. Randomness is tested by statistical tests and hence, security evaluation of a cryptographic algorithm deeply depends on statistical randomness tests. In this thesis we focus on randomness postulates of Solomon W. Golomb in particular, second postulate which is about r...
A Survey on the provable security using indistinguishability notion on cryptographic encryption schemes
Ayar, Emre; Doğanaksoy, Ali; Koçak, Onur; Department of Cryptography (2018)
For an encryption scheme, instead of Shannon's perfect security definition, Goldwasser and Micali defined a realistic provable security called semantic security. Using indistinguishability notion, one can define security levels according to the polynomial time adversaries' capabilities such as chosen plaintext attacks (CPA) and chosen ciphertext attacks (CCA) for both symmetric and asymmetric encryption schemes in addition to the hard mathematical problems the algorithms based on. Precautions to prevent the...
Dependability design for distributed real-time systems with broadcast communication /
Kartal, Yusuf Bora; Schmidt, Şenan Ece; Department of Electrical and Electronics Engineering (2014)
The operation of distributed systems relies on the timely exchange of message data via dependable communication networks. Previous works suggest hardware redundancy for potential faults in the underlying network infrastructure to achieve dependability. However, software faults and faults that cannot be resolved on the hardware level are not considered in the existing literature. This work proposes a new method for software fault-tolerant communication in distributed real-time systems with communication netw...
Homomorphic encryption based on the ring learning with errors (RLWE) problem
Keskinkurt, İrem; Cenk, Murat; Department of Cryptography (2017)
The encryption techniques used to ensure data secrecy have been evolving in compliance with the developments in technology and reforming according to need. Nowadays, the increase in the amount of data that should be stored in encrypted form, has led to the need for encryption schemes that provide both the safety and the efficient usability of data. Homomorphic encryption, which enables the ability to make computations on encrypted data, is seen as one of the solutions that can meet this need. In this thesis...
Citation Formats
K. Kaskaloglu, K. Kaya, and A. A. Selcuk, “Threshold Broadcast Encryption with reduced complexity,” 2007, p. 312, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66803.