Effects of ultrasound on the synthesis of silicalite-1 nanocrystals

2012-09-01
Gürbüz, Hale
Tokay, Begum
Erdem-Senatalar, Ayse
Application of power ultrasound, offers potential in the degree of control over the preparation and properties of nanocrystalline zeolites, which have become increasingly important due to their diverse emerging applications. Synthesis of silicalite-1 nanocrystals from a clear solution was carried out at 348 K in the absence and presence of ultrasound of 300 and 600 W, in an attempt to investigate the effects of sonication, in this respect. Variation of the particle size and particle size distribution was followed with respect to time using a laser light scattering device with a detector set to collect back-scattered light at an angle of 173 degrees. Product yield was determined and the crystallinity was analyzed by X-ray diffraction for selected samples collected during the syntheses. Nucleation, particle growth and crystallization rates all increased as a result of the application of ultrasound and highly crystalline silicalite-1 of smaller average particle diameter could be obtained at shorter synthesis times. The particle size distributions of the product populations, however, remained similar for similar average particle sizes. The rate of increase in yield was also speeded up in the presence of ultrasound, while the final product yield was not affected. Increasing the power of ultrasound, from 300 to 600 W, increased the particle growth rate and the crystalline domain size, and decreased both the final particle diameter and the time required for the particle growth to reach completion, while its effect on nucleation was unclear.
ULTRASONICS SONOCHEMISTRY

Suggestions

Effects of oxidative functionalized and aminosilanized carbon nanotubes on the crystallization behaviour of polyamide-6 nanocomposites
Kaynak, Cevdet (2014-04-01)
The purpose of this study is to investigate effects of oxidative functionalized and aminosilanized carbon nanotubes on the (1) isothermal and (2) non-isothermal crystallization kinetics of polyamide-6 by DSC analyses, and (3) crystal structure of injection molded specimens by XRD analyses. Nanocomposites were compounded by using melt mixing technique via twin screw extrusion. Due to basically very effective heterogeneous nucleation effect, both increasing amount and surface functionalization of carbon nanot...
EFFECTS OF FREEZING ON COLLAGEN NANOSCALE STRUCTURE IN ENGINEERED TISSUES
Özçelikkale, Altuğ; Xu, Xianfan; Han, Bumsoo (2013-01-01)
The present study aims to systematically investigate the freezing-induced changes that occur at multiple levels of organization of collagen nanostructure in the engineered tissues (ET). Collagen is a major constituent of the extracellular matrix (ECM) of biological tissues, and is also used for scaffold of engineered tissues and biomaterials [1, 2]. Given its abundance and widespread physiological function in vivo, a proper understanding of the relationships between the collagen’s structure, properties, and...
Effect of chemical structure on properties of polyurethanes: Temperature responsiveness and biocompatibility
Komez, Aylin; Buyuksungur, Senem; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2018-09-01)
Polyurethanes are known as one of the most biocompatible and inherently blood-compatible materials and have a wide range of applications in the medical field due to their controllable structure and properties. Durability, elasticity, elastomeric structure, fatigue resistance, versatility, and easy acceptance by the biological media after the application makes these polymers preferable in medical area. In this study, polyurethane films were prepared using poly(propylene-ethylene glycol) and either toluene-2,...
Effects of the non-steroidal anti-inflammatory drug celecoxib on cholesterol containing distearoyl phosphatidylcholine membranes
Sade, Asli; Banerjee, Sreeparna; Severcan, Feride (2011-01-01)
The effects of different concentrations of celecoxib on the acyl chain order, dynamics and the hydration status of the head group and interfacial region of model membranes containing DSPC and cholesterol were investigated in detail using Fourier transform infrared spectroscopy. Our results reveal that regardless of the presence of cholesterol, celecoxib is able to alter the physical properties of membranes. It exerts opposing effects on membrane order at high and low concentrations and decreases membrane fl...
Influence of micropatterns on human mesenchymal stem cell fate /
Hastürk, Onur; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin; Department of Biotechnology (2016)
Mesenchymal stem cells (MSCs) are promising cell sources for tissue engineering applications as they can differentiate into a variety of adult cells types including osteoblasts. In vivo microenvironment of stem cells is known to provide both biochemical signals and micro- and nanoscale physical cues that influence the behavior and fate of stem cells. The use of soluble chemical factors is the most common strategy to guide the commitment of MSCs to specific lineages, but it is a cause of concern such as unsa...
Citation Formats
H. Gürbüz, B. Tokay, and A. Erdem-Senatalar, “Effects of ultrasound on the synthesis of silicalite-1 nanocrystals,” ULTRASONICS SONOCHEMISTRY, pp. 1108–1113, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66883.