Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
O(N) parallel tight binding molecular dynamics simulation of carbon nanotubes
Date
2002-10-15
Author
Ozdogan, C
Dereli, G
Cagin, T
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
49
views
0
downloads
Cite This
We report an O(N) parallel tight binding molecular dynamics simulation study of (10 x 10) structured carbon nanotubes (CNT) at 300 K. We converted a sequential O(N-3) TBMD simulation program into an O(N) parallel code, utilizing the concept of parallel virtual machines (PVM). The code is tested in a distributed memory system consisting of a cluster with 8 PC's that run under Linux (Slackware 2.2.13 kernel). Our results on the speed up, efficiency and system size are given.
Subject Keywords
O(N)
,
Parallelization
,
Tight-binding
,
Molecular dynamics
,
Carbon nanotubes
,
PVM
URI
https://hdl.handle.net/11511/67302
Journal
COMPUTER PHYSICS COMMUNICATIONS
DOI
https://doi.org/10.1016/s0010-4655(02)00553-2
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
O(N) algorithms in tight-binding molecular-dynamics simulations of the electronic structure of carbon nanotubes
Dereli, G; Ozdogan, C (American Physical Society (APS), 2003-01-15)
The O(N) and parallelization techniques have been successfully applied in tight-binding molecular-dynamics simulations of single-walled carbon nanotubes (SWNT's) of various chiralities. The accuracy of the O(N) description is found to be enhanced by the use of basis functions of neighboring atoms (buffer). The importance of buffer size in evaluating the simulation time, total energy, and force values together with electronic temperature has been shown. Finally, through the local density of state results, th...
Simulated FMRI toolbox
Türkay, Kemal Doğuş; Gökçay, Didem; Department of Medical Informatics (2009)
In this thesis a simulated fMRI toolbox is developed in order to generate simulated data to compare and benchmark different functional magnetic resonance image analysis methods. This toolbox is capable of loading a high resolution anatomic brain volume, generating 4D fMRI data in the same data space with the anatomic image, and allowing the user to create block and event-related design paradigms. Common fMRI artifacts such as scanner drift, cardiac pulsation, habituation and task related or spontaneous head...
Multi objective conceptual design optimization of an agricultural aerial robot (AAR)
Özdemir, Segah; Tekinalp, Ozan; Department of Aerospace Engineering (2005)
Multiple Cooling Multi Objective Simulated Annealing algorithm has been combined with a conceptual design code written by the author to carry out a multi objective design optimization of an Agricultural Aerial Robot. Both the single and the multi objective optimization problems are solved. The performance figures of merits for different aircraft configurations are compared. In this thesis the potential of optimization as a powerful design tool to the aerospace problems is demonstrated.
Numerical Modelling and Experimental Analysis of Vibratory and Acoustics Behaviours of a Special Design Squirrel-Cage Three-Phase Asynchronous Machine
Ionescu, R. M.; Negoita, A.; N'Diaye, A.; Torregrossa, D.; Djerdir, A.; Miraoui, A.; Scutaru, Gh. (2011-09-10)
The paper presents a comparison between the obtained results from testing a special design 5 kW squirrel-cage three-phase asynchronous machine and the numerical model of the same machine, simulated under the FLUX2D Finite Element Software. The aim is to validate the numerical model in the loaded and unloaded cases. The resulting model will be used for further research into the vibratory behaviour and noise of the motor. In this paper, an experimental approach is used to show the influence of load on motor v...
PARALLEL MULTILEVEL FAST MULTIPOLE ALGORITHM FOR COMPLEX PLASMONIC METAMATERIAL STRUCTURES
Ergül, Özgür Salih (2013-11-09)
A parallel implementation of the multilevel fast multipole algorithm (MLFMA) is developed for fast and accurate solutions of electromagnetics problems involving complex plasmonic metamaterial structures. Composite objects that consist of multiple penetrable regions, such as dielectric, lossy, and plasmonic parts, are formulated rigorously with surface integral equations and solved iteratively via MLFMA. Using the hierarchical strategy for the parallelization, the developed implementation is capable of simul...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Ozdogan, G. Dereli, and T. Cagin, “O(N) parallel tight binding molecular dynamics simulation of carbon nanotubes,”
COMPUTER PHYSICS COMMUNICATIONS
, pp. 188–205, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67302.