Hole-Cleaning Performance of Gasified Drilling Fluids in Horizontal Well Sections

2012-09-01
Ozbayoglu, E. M.
Osgouei, R. E.
ÖZBAYOĞLU, AHMET MURAT
Yuksel, E.
This study aims to investigate the hole-cleaning process during the flow of a drilling fluid consisting of a gas and a liquid phase through a horizontal annulus. Experiments have been conducted using the Middle East Technical University (METU) multiphase flow loop under a wide range of air- and water-flow rates while introducing cuttings into the annulus for different amounts. Data have been collected for steady-state conditions (i.e., liquid, gas, and cuttings injection rates are stabilized). Collected data include flow rates of liquid and gas phases, frictional pressure drop inside the test section, local pressures at different locations in the flow loop, and high-speed digital images for identification of solid, liquid, and gas distribution inside the wellbore. Digital image-processing techniques are applied on the recorded images for volumetric phase distribution inside the test section, which are in dynamic condition. The effects of liquid and gas phases are investigated on cuttings-transport behavior under different flow conditions. Observations showed that the major contribution for carrying the cuttings along the wellbore is the liquid phase. However, as the gas-flow rate is increased, the flow area left for the liquid phase dramatically decreases, which leads to an increase in the local velocity of the liquid phase causing the cuttings to be dragged and moved, or a significant erosion on the cuttings bed. Therefore, increase in the flow rate of gas phase causes an improvement in the cuttings transport although the liquid-phase flow rate is kept constant. On the basis of the experimental observations, a mechanistic model that estimates the total cuttings concentration and frictional pressure loss inside the wellbore is introduced for gasified fluids flowing through a horizontal annulus. The model estimations are in good agreement with the measurements obtained from the experiments. By using the model, minimum liquid- and gas-flow rates can be identified for having an acceptable cuttings concentration inside the wellbore as well as a preferably low frictional pressure drop. Thus, the information obtained from this study is applicable to any underbalanced drilling operation conducted with gas/liquid mixtures, for optimization of flow rates for liquid and gas phases to transport the cuttings in the horizontal sections in an effective way with a reasonably low frictional pressure loss.
SPE JOURNAL

Suggestions

Numerical Simulation of Reciprocating Flow Forced Convection in Two-Dimensional Channels
Sert, Cüneyt (ASME International, 2003-5-20)
<jats:p>Numerical simulations of laminar, forced convection heat transfer for reciprocating, two-dimensional channel flows are performed as a function of the penetration length, Womersley (α) and Prandtl (Pr) numbers. The numerical algorithm is based on a spectral element formulation, which enables high-order spatial resolution with exponential decay of discretization errors, and second-order time-accuracy. Uniform heat flux and constant temperature boundary conditions are imposed on certain regions of the ...
Numerical Solution of MHD Incompressible Convection Flow in Channels
Gurbuz, Merve; Tezer, Münevver (2019-1-01)
The purpose of this paper is to study numerically the influence of the magnetic field, buoyancy force and viscous dissipation on the convective flow and temperature of the fluid in a square cavity, lid-driven cavity, and lid-driven cavity with an obstacle at the center. The continuity, momentum and energy equations are coupled including buoyancy and magnetic forces, and energy equation contains Joule heating and viscous dissipation. The equations are solved in terms of stream function, vorticity and tempera...
Flow dynamics and mixing processes in hydraulic jump arrays: Implications for channel-lobe transition zones
Dorrell, R. M.; Peakall, J.; Sumner, E. J.; Parsons, D. R.; Darby, S. E.; Wynn, R. B.; Ozsoy, E.; Tezcan, Devrim (2016-11-01)
A detailed field investigation of a saline gravity current in the southwest Black Sea has enabled the first complete analysis of three-dimensional flow structure and dynamics of a series of linked hydraulic jumps in,stratified, density-driven, flows. These field observations were collected using an acoustic Doppler current profiler mounted on an autonomous underwater vehicle, and reveal that internal mixing processes in hydraulic jumps, including flow expansion and recirculation, provide a previously unreco...
Sensitivity Analysis of Major Drilling Parameters on Cuttings Transport during Drilling Highly-inclined Wells
Ozbayoglu, E. M.; Miska, S. Z.; Takach, N.; Reed, T. (Informa UK Limited, 2009-01-01)
In this study, a layered cuttings transport model is developed for high-angle and horizontal wells, which can be used for incompressible non-Newtonian fluids as well as compressible non-Newtonian fluids (i.e., foams). The effects of major drilling parameters, such as flow rate, rate of penetration, fluid density, viscosity, gas ratio, cuttings size, cuttings density, wellbore inclination and eccentricity of the drillsting on cuttings transport efficiency are analyzed. The major findings from this study are,...
RBF Solution of Incompressible MHD Convection Flow in a Pipe
Gürbüz, Merve; Tezer, Münevver (2016-10-12)
The steady convection flow of a viscous, incompressible and electrically conducting fluid is considered in a lid-driven cavity under the effect of a uniform horizontally applied magnetic field. The governing equations are the Navier-Stokes equations of fluid dynamics including buoyancy and Lorentz forces and the energy equation including Joule heating and viscous dissipation. These coupled equations are solved iteratively in terms of velocity components, stream function, vorticity, pressure and temperature ...
Citation Formats
E. M. Ozbayoglu, R. E. Osgouei, A. M. ÖZBAYOĞLU, and E. Yuksel, “Hole-Cleaning Performance of Gasified Drilling Fluids in Horizontal Well Sections,” SPE JOURNAL, pp. 912–923, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67390.