Hole-Cleaning Performance of Gasified Drilling Fluids in Horizontal Well Sections

Ozbayoglu, E. M.
Osgouei, R. E.
Yuksel, E.
This study aims to investigate the hole-cleaning process during the flow of a drilling fluid consisting of a gas and a liquid phase through a horizontal annulus. Experiments have been conducted using the Middle East Technical University (METU) multiphase flow loop under a wide range of air- and water-flow rates while introducing cuttings into the annulus for different amounts. Data have been collected for steady-state conditions (i.e., liquid, gas, and cuttings injection rates are stabilized). Collected data include flow rates of liquid and gas phases, frictional pressure drop inside the test section, local pressures at different locations in the flow loop, and high-speed digital images for identification of solid, liquid, and gas distribution inside the wellbore. Digital image-processing techniques are applied on the recorded images for volumetric phase distribution inside the test section, which are in dynamic condition. The effects of liquid and gas phases are investigated on cuttings-transport behavior under different flow conditions. Observations showed that the major contribution for carrying the cuttings along the wellbore is the liquid phase. However, as the gas-flow rate is increased, the flow area left for the liquid phase dramatically decreases, which leads to an increase in the local velocity of the liquid phase causing the cuttings to be dragged and moved, or a significant erosion on the cuttings bed. Therefore, increase in the flow rate of gas phase causes an improvement in the cuttings transport although the liquid-phase flow rate is kept constant. On the basis of the experimental observations, a mechanistic model that estimates the total cuttings concentration and frictional pressure loss inside the wellbore is introduced for gasified fluids flowing through a horizontal annulus. The model estimations are in good agreement with the measurements obtained from the experiments. By using the model, minimum liquid- and gas-flow rates can be identified for having an acceptable cuttings concentration inside the wellbore as well as a preferably low frictional pressure drop. Thus, the information obtained from this study is applicable to any underbalanced drilling operation conducted with gas/liquid mixtures, for optimization of flow rates for liquid and gas phases to transport the cuttings in the horizontal sections in an effective way with a reasonably low frictional pressure loss.


Numerical Simulation of Reciprocating Flow Forced Convection in Two-Dimensional Channels
Sert, Cüneyt (ASME International, 2003-5-20)
<jats:p>Numerical simulations of laminar, forced convection heat transfer for reciprocating, two-dimensional channel flows are performed as a function of the penetration length, Womersley (α) and Prandtl (Pr) numbers. The numerical algorithm is based on a spectral element formulation, which enables high-order spatial resolution with exponential decay of discretization errors, and second-order time-accuracy. Uniform heat flux and constant temperature boundary conditions are imposed on certain regions of the ...
Enhanced thermal conductivity of nanofluids: a state-of-the-art review
Özerinç, Sezer; Yazicioglu, Almila Guevenc (2010-02-01)
Adding small particles into a fluid in cooling and heating processes is one of the methods to increase the rate of heat transfer by convection between the fluid and the surface. In the past decade, a new class Of fluids called nanofluids, in which particles of size 1-100 nm with high thermal conductivity are Suspended in a conventional heat transfer base fluid, have been developed. It has been shown that nanofluids containing a small amount of metallic or nonmetallic particles, Such as Al2O3, CuO, Cu, SiO2,...
Flow dynamics and mixing processes in hydraulic jump arrays: Implications for channel-lobe transition zones
Dorrell, R. M.; Peakall, J.; Sumner, E. J.; Parsons, D. R.; Darby, S. E.; Wynn, R. B.; Ozsoy, E.; Tezcan, Devrim (2016-11-01)
A detailed field investigation of a saline gravity current in the southwest Black Sea has enabled the first complete analysis of three-dimensional flow structure and dynamics of a series of linked hydraulic jumps in,stratified, density-driven, flows. These field observations were collected using an acoustic Doppler current profiler mounted on an autonomous underwater vehicle, and reveal that internal mixing processes in hydraulic jumps, including flow expansion and recirculation, provide a previously unreco...
Numerical Simulation of Rarefied Laminar Flow past a Circular Cylinder
Çelenligil, Mehmet Cevdet (2014-07-18)
Numerical simulations have been obtained for two-dimensional laminar flows past a circular cylinder in the transitional regime. Computations are performed using the direct simulation Monte Carlo method for Knudsen numbers of 0.02 and 0.2 and Mach numbers of 0.102 and 0.4. For these conditions, Reynolds number ranges from 0.626 to 24.63 and the flows are steady. Results show that separation occurs in the wake region for the flow with Mach number of 0.4 and Knudsen number of 0.02, but for the other eases flow...
Numerical simulation of fluid flow and heat transfer in a trapezoidal microchannel with COMSOL multiphysics: A case study
Turgay, Metin Bilgehan; Güvenç Yazıcıoğlu, Almıla (2018-01-01)
In this study, fluid flow and heat transfer in a trapezoidal microchannel are numerically investigated. For this purpose, a reference study with experimental and numerical solutions is adopted from the literature and solved with COMSOL multiphysics. Good agreement with the results of the reference work is obtained. In addition, effects of stabilization methods and element discretization options that are offered by the program on the results are investigated and discussed with examples. In addition, two diff...
Citation Formats
E. M. Ozbayoglu, R. E. Osgouei, A. M. ÖZBAYOĞLU, and E. Yuksel, “Hole-Cleaning Performance of Gasified Drilling Fluids in Horizontal Well Sections,” SPE JOURNAL, pp. 912–923, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67390.