Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Simulation of complex transport of nanoparticles around a tumor using tumor-microenvironment-on-chip
Date
2014-11-01
Author
Kwak, Bongseop
Özçelikkale, Altuğ
Shin, Crystal S.
Park, Kinam
Han, Bumsoo
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
61
views
0
downloads
Cite This
Delivery of therapeutic agents selectively to tumor tissue, which is referred as "targeted delivery," is one of the most ardently pursued goals of cancer therapy. Recent advances in nanotechnology enable numerous types of nanoparticles (NPs) whose properties can be designed for targeted delivery to tumors. In spite of promising early results, the delivery and therapeutic efficacy of the majority of NPs are still quite limited. This is mainly attributed to the limitation of currently available tumor models to test these NPs and systematically study the effects of complex transport and pathophysiological barriers around the tumors. In this study, thus, we developed a new in vitro tumor model to recapitulate the tumor microenvironment determining the transport around tumors. This model, named tumor-microenvironment-on-chip (T-MOC), consists of 3-dimensional microfluidic channels where tumor cells and endothelial cells are cultured within extracellular matrix under perfusion of interstitial fluid. Using this T-MOC platform, the transport of NPs and its variation due to tumor microenvironmental parameters have been studied including cut-off pore size, interstitial fluid pressure, and tumor tissue microstructure. The results suggest that T-MOC is capable of simulating the complex transport around the tumor, and providing detailed information about NP transport behavior. This finding confirms that NPs should be designed considering their dynamic interactions with tumor microenvironment. (C) 2014 Elsevier B.V. All rights reserved.
URI
https://hdl.handle.net/11511/69456
Journal
JOURNAL OF CONTROLLED RELEASE
DOI
https://doi.org/10.1016/j.jconrel.2014.08.027
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Superior Photodynamic Therapy of Colon Cancer Cells by Selenophene-BODIPY-Loaded Superparamagnetic Iron Oxide Nanoparticles
Ozvural Sertcelik, Kubra Nur; Karaman, Osman; Almammadov, Toghrul; Günbaş, Emrullah Görkem; Kolemen, Safacan; Yagci Acar, Havva; Onbasli, Kubra (2022-01-01)
© 2022 Wiley-VCH GmbH.Development of targeted nanoparticles as carriers to deliver photosensitizers to cancer cells is highly beneficial for ensuring the expected therapeutic outcome of photodynamic therapy. Herein, polyacrylic acid (PAA) coated superparamagnetic iron oxide nanoparticles (SPIONs), conjugated with endothelial growth factor receptor (EGFR) targeting Cetuximab (Cet) were loaded with a BODIPY-based (BOD-Se-I) photosensitizer (Cet-PAA@SPION/BOD-Se-I) to achieve enhanced and selective photodynami...
Characterization of Gemcitabine Loaded Polyhydroxybutyrate Coated Magnetic Nanoparticles for Targeted Drug Delivery
Parsian, Maryam; Mutlu, Pelin; Yalcin, Serap; Gündüz, Ufuk (2020-01-01)
Background: Targeted drug delivery is one of the recent hot topics in cancer therapy. Because of having a targeting potential under the magnetic field and a suitable surface for the attachment of different therapeutic moieties, magnetic nanoparticles are widely studied for their applications in medicine.
Development of a drug targeting approach for cancer therapy: Drug carrier-protein conjugate
Muvaffak, Aslı; Gürhan, İsmet; Gündüz, Ufuk; Hasırcı, Nesrin (2001-10-28)
Targeted delivery of anticancer drugs is one of the most actively pursued goals in anticancer chemotherapy. A major disadvantage of anticancer drugs is their lack of selectivity for tumor tissue, which causes severe side effects and results in low cure rates. Any strategy by which a cytotoxic drug is targeted to the tumor, thus increasing the therapeutic index of the drug, is a way of improving cancer chemotherapy and minimizing systematic toxicity. This study covers the preparation of the gelatin microsphe...
Target-specific delivery of doxorubicin to human glioblastoma cell line via ssDNA aptamer
BAYRAÇ, TAHİR; Akca, Oya Ercan; Eyidogan, Fusun Inci; Öktem, Hüseyin Avni (Springer Science and Business Media LLC, 2018-03-01)
Targeted drug delivery approaches have been implementing significant therapeutic gain for cancer treatment since last decades. Aptamers are one of the mostly used and highly selective targeting agents for cancer cells. Herein, we address a nano-sized targeted drug delivery approach adorned with A-172 glioblastoma cell-line-specific single stranded DNA (ssDNA) aptamer in which the chemotherapeutic agent Doxorubicin (DOX) had been conjugated. DNA aptamer, GMT-3, was previously selected for specific recognitio...
Investigation of in vitro cytotoxic effects of heparin coated iron oxide nanoparticles combined with tpp-dca on human hepatocellular carcinoma cell line HEPG2
Saraç, Başak Ezgi; Güray, Nülüfer Tülün; Volkan, Mürvet; Department of Biology (2018)
Nanotechnology in medicine involves the applications of nanoparticles and one of the rising field is cancer nanotechnology, which has been increasingly used in cancer diagnostics, imaging, and therapeutic drug delivery. The advantage of the use of the nanoparticles is that, they can be designed to be specific for tumor tissue. This allows increased drug delivery efficiency and reduced off-target toxicities. Iron oxide nanoparticles used in this study are smaller than 100 nm but still it gives an enhanced su...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Kwak, A. Özçelikkale, C. S. Shin, K. Park, and B. Han, “Simulation of complex transport of nanoparticles around a tumor using tumor-microenvironment-on-chip,”
JOURNAL OF CONTROLLED RELEASE
, pp. 157–167, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69456.