Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Difference schemes for the class of singularly perturbed boundary value problems
Date
2004-03-01
Author
Sklyar, Sergey N
Rafatov, İsmail
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
61
views
0
downloads
Cite This
This work deals with the construction of difference schemes for the numerical solution of singularly perturbed boundary value problems, which appear while solving heat transfer equations with spherical symmetry. The projective version of integral interpolation (PVIIM) method is used. Derived schemes allow to approximate the solution of the problem and the derivatives of the solution at the same time. Moreover, they allow to approximate the boundary conditions of general form in the framework of the same method. New schemes are tested in order to compare them with well known difference schemes. Estimates for rates of classical and uniform convergence are carried out.
Subject Keywords
Difference scheme
,
uniform convergence
,
singular perturbation
URI
https://hdl.handle.net/11511/69622
Journal
Applied Numerical Analysis & Computational Mathematics
DOI
https://doi.org/10.1002/anac.200310019
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Pseudospin and spin symmetry in Dirac-Morse problem with a tensor potential
AYDOĞDU, OKTAY; Sever, Ramazan (Elsevier BV, 2011-09-14)
Under the conditions of the pseudospin and spin symmetry, approximate analytical solutions of the Dirac-Morse problem with Coulomb-like tensor potential are presented. The energy eigenvalue equations are found and corresponding radial wave functions are obtained in terms of confluent hypergeometric functions. The energy eigenvalues are calculated numerically in the absence and presence of the tensor potential. We also investigate the contribution of the potential parameters to the energy splitting of the ps...
Parallel processing of two-dimensional euler equations for compressible flows
Doǧru, K.; Aksel, M.h.; Tuncer, İsmail Hakkı (2008-12-01)
A parallel implementation of a previously developed finite volume algorithm for the solution of two-dimensional, unsteady, compressible Euler equations is given. The conservative form of the Euler equations is discretized with a second order accurate, one-step Lax-Wendroff scheme. Local time stepping is utilized in order to accelerate the convergence. For the parallel implementation of the method, the solution domain is partitioned into a number of subdomains to be distributed to separate processors for par...
Numerical solution of nonlinear reaction-diffusion and wave equations
Meral, Gülnihal; Tezer, Münevver; Department of Mathematics (2009)
In this thesis, the two-dimensional initial and boundary value problems (IBVPs) and the one-dimensional Cauchy problems defined by the nonlinear reaction- diffusion and wave equations are numerically solved. The dual reciprocity boundary element method (DRBEM) is used to discretize the IBVPs defined by single and system of nonlinear reaction-diffusion equations and nonlinear wave equation, spatially. The advantage of DRBEM for the exterior regions is made use of for the latter problem. The differential quad...
Numerical Solution and Stability Analysis of Transient MHD Duct Flow
Tezer, Münevver (2018-11-01)
This paper simulates the 2D transient magnetohydrodynamic (MHD) flow in a rectangular duct in terms of the velocity of the fluid and the induced magnetic field by using the radial basis function (RBF) approximation. The inhomogeneities in the Poisson’s type MHD equations are approximated using the polynomial functions (1+r) and the particular solution is found satisfying both the equations and the boundary conditions (no-slip and insulated walls). The Euler scheme is used for advancing the solution to ste...
Asymptotic convergence of the solution of the initial value problem for singularly perturbed higher-order integro-differential equation
Dauylbayev, M. K.; Akhmet, Marat; Mirzakulova, A. E.; Uaissov, A. B. (2018-01-01)
The article is devoted to research the Cauchy problem for singularly perturbed higher-order linear integro-differential equation with a small parameters at the highest derivatives, provided that the roots of additional characteristic equation have negative signs. An explicit analytical formula of the solution of singularly perturbed Cauchy problem is obtained. The theorem about asymptotic estimate of a solution of the initial value problem is proved. The nonstandard degenerate initial value problem is const...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. N. Sklyar and İ. Rafatov, “Difference schemes for the class of singularly perturbed boundary value problems,”
Applied Numerical Analysis & Computational Mathematics
, pp. 223–230, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69622.