Spin parameters and nonlinear kalman filtering for spinning spacecraft attitude estimation

2017-01-01
Söken, Halil Ersin
Asamura, Kazushi
Nakamura, Yosuke
Takashima, Takeshi
When quaternions are used for representing the attitude of a spinning spacecraft in an attitude estimation filter, several problems appear due to their rapid variations. These problems include numerical integration errors and violation of the linear approximations for the filter. In this study, we propose representing the attitude of a spinning spacecraft using a set of spin parameters. These parameters consist of the spin-axis orientation unit vector in the inertial frame and the spin phase angle. This representation is advantageous as the spin axis direction components in the inertial frame do not change rapidly and the phase angle changes with a constant rate in the absence of a torque. The attitude matrix and the kinematics equations are derived in terms of spin parameters. As the equations are highly nonlinear an Unscented Kalman Filter (UKF) is implemented to estimate the spacecraft's attitude in spin parameters. The estimation results are compared with those of a quaternion based UKF in different scenarios using the simulated data for JAXA's ERG spacecraft.

Suggestions

Spin-axis tilt estimation algorithm with validation by real data
Söken, Halil Ersin; Sakai, Shin-Ichiro (2017-01-01)
The spin-axis tilt (SAT), which is also known as dynamic imbalance or coning error, is one of the dominant errors deteriorating the attitude determination accuracy of spinning spacecraft. It is experienced as the misalignment of the major principal axis of the spacecraft from the intended body spin axis. This paper evaluates a straightforward SAT estimation algorithm by means of real in-flight data. The algorithm is based on the Singular Value Decomposition (SVD) method and makes use of the attitude rates e...
Flow and turbulence structure around abutments with sloped sidewalls
Köken, Mete (American Society of Civil Engineers (ASCE), 2014-01-01)
Results of eddy-resolving numerical simulations are used to investigate flow and turbulence structure around an isolated abutment with sloped sidewalls at conditions corresponding to the start (flatbed) and the end (equilibrium bathymetry) of the scour process. Besides cases where the abutment is not protected against scour using riprap, the paper considers cases where a riprap apron of constant width is present around the base of the abutment at the start of the scour process. The paper also discusses the ...
Spinodal instabilities in symmetric nuclear matter within a nonlinear relativistic mean-field approach
Acar, Fatma; Yılmaz, Osman; Department of Physics (2011)
Spinodal instability mechanism and early development of density fluctuations for symmetric nuclear matter at finite temperature are studied. A stochastic extension of Walecka-type relativistic mean-field model including non-linear self-interactions of scalar mesons with NL3 parameter set is employed in the semi-classical approximation. The growth rates of unstable collective modes are investigated below the normal density and at low temperatures. The system exhibits most unstable behavior in longer wave len...
Spinodal instabilities in nuclear matter in a stochastic relativistic mean-field approach
Ayik, S.; Yılmaz Tüzün, Özgül; Er, N.; Gokalp, A.; Ring, P. (American Physical Society (APS), 2009-09-01)
Spinodal instabilities and early growth of baryon density fluctuations in symmetric nuclear matter are investigated in the basis of the stochastic extension of the relativistic mean-field approach in the semiclassical approximation. Calculations are compared with the results of nonrelativistic calculations based on Skyrme-type effective interactions under similar conditions. A qualitative difference appears in the unstable response of the system: the system exhibits most unstable behavior at higher baryon d...
Experimental and computational evaluation of transient behavior of a typical satellite monopropellant propulsion system
Çilli Tarçın, Ayşegül; Aksel, Mehmet Haluk; Ak, Mehmet Ali; Department of Mechanical Engineering (2014)
In this study, a typical satellite monopropellant propulsion system is numerically modeled by using a commercial software and analyses are conducted regarding the priming operation of satellite propulsion system. Analyses are performed for different tank pressures, downstream line pressures, distance between the tank and orifice, distance between the orifice and latch valve, distance between the latch valve and exit valve, orifice diameter and pipe diameters. Moreover, a test setup is constructed and tests ...
Citation Formats
H. E. Söken, K. Asamura, Y. Nakamura, and T. Takashima, “Spin parameters and nonlinear kalman filtering for spinning spacecraft attitude estimation,” 2017, vol. 160, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69752.