The effect of surface morphology on the rate of phase change of micron and sub-micron sized 2-D droplets

2020-01-01
Rezaeimoghaddam, Mohammad
Dursunkaya, Zafer
© 2020 Taylor & Francis.Heat transfer via phase change is a major contributor to heat removal in numerous engineering applications. Thin films of liquid result in increased heat transfer due to a reduction of conduction resistance, in addition the pressure jump at the liquid-vapor interface also affects the rate and direction of the rate of phase change. Because of these effects the morphology of the substrate surface is expected to affect the film shape, hence heat transfer, especially in thin films. In this study, the influence of surface characteristics on the rate of phase change from micron- and submicron-sized 2D droplets–i.e. films extending to infinity–forming on a substrate are modeled. Surface film profiles are generated on both flat and nonflat surfaces, triangular or wavy in nature, and a kinetic model for quasi-equilibrium phase change is applied. In the case of wavy surfaces, the surface is assumed to be a harmonic wave with an amplitude equal to the surface roughness and a wavelength corresponding to values commonly encountered in applications. Due to the presence of intermolecular forces at the contact line, which renders the solution of the augmented Young-Laplace equation stiff, an implicit scheme is employed for the numerical integration. To verify the method, the predictions of a molecular dynamics (MD) simulation of a nano-sized droplet present on a V-grooved surface are compared to the continuum model. The augmented Young-Laplace equation is solved numerically along with a phase change model originating from kinetic theory to calculate the shape of the two-phase interface forming the droplet and study the effect of various parameters on the rate of phase change. Results are obtained for droplets with liquid pressures higher and lower than that of vapor, resulting in opposite contribution to phase change due to the pressure jump at the interface. The results show that the heat-transfer rate can be substantially altered due primarily to the combined effects of surface morphology and disjoining pressure. It is also concluded that wavy surfaces with short amplitudes are preferable to ones with longer amplitudes for enhancing the rate of evaporation or condensation.
Nanoscale and Microscale Thermophysical Engineering

Suggestions

On the effect of structural forces on a condensing film profile near a fin-groove corner
Akdag, Osman; Akkus, Yigit; Dursunkaya, Zafer (Elsevier BV, 2020-07-01)
Estimation of condenser performance of two-phase passive heat spreaders with grooved wick structures is crucial in the prediction of the overall performance of the heat spreader. Whilst the evaporation problem in microgrooves has been widely studied, studies focusing on the condensation on fin-groove systems have been scarce. Condensation on fin-groove systems is actually a multi-scale problem. Thickness of the film near the fin-groove corner can decrease to nanoscale dimensions, which requires the inclusio...
Effect of magnetic field and temperature on the voltage-current characteristics of YBCO superconductor
Bocuk, H; Albiss, BA; Ercan, I; Ozkan, H; Hasanlı, Nızamı (Springer Science and Business Media LLC, 1996-11-01)
Voltage-current characteristics of YBCO superconductor was studied under magnetic field up to 0.4 T at different temperatures below T-c. The critical temperature decreases and the transition width broadens under magnetic field. V-I data below T-c were fitted to a power law expression V similar to I-beta(T,I-B) in which beta(T,B) is found to decrease with increase of magnetic field and temperature, gradually approaching unity as T approaches T-c, being independent of magnetic field. Similarly beta(T,B) appro...
A comparative ab initio study of the ferroelectric behaviour in KNO3 and CaCO3
Aydınol, Mehmet Kadri; Alpay, S. P. (IOP Publishing, 2007-12-12)
Potassium nitrate exhibits a reentrant phase transformation, where a metastable ferroelectric phase (gamma-KNO3) is formed upon cooling from high temperature. The layered structure of this ferroelectric phase is composed of alternating layers of potassium ions and nitrate groups; wherein, a central nitrogen atom is coordinated by three equilateral triangular oxygen atoms. The group layer is located less than midway between the cation layers, giving rise to a polar structure. From a structural perspective, t...
Evaluation of the radiative recombination mechanism in Si nanocrystals embedded in silica matrix
Righini, Marcofabio; Gnoli, Andrea; Razzari, Luca; Serincan, Ugur; Turan, Raşit (American Scientific Publishers, 2008-02-01)
We report measurements of the temperature dependence of photoluminescence (PQ life-time and efficiency of Si nanocrystals (Si-Nc) embedded in silica matrix. We use a practical technique based on lock-in acquisition that allows us to simultaneously evaluate, at each emission-energy, intensity and decay-time of the detected signal. Samples are prepared by Silicon-ion implantation in a SiO2 layer followed by thermal annealing. The implantation dose of Si ions ranges between 2 x 10(16) cm(-2) and 2 x 10(17) cm(...
A novel experimental and density functional theory study on palladium and nitrogen doped few layer graphene surface towards glucose adsorption and electrooxidation
Caglar, Aykut; Duzenli, Derya; Önal, Işık; Tezsevin, Ilker; Sahin, Ozlem; Demir Kıvrak, Hilal (Elsevier BV, 2021-03-01)
At present, few layer graphene (G) and nitrogen doped few layer graphene (N doped-G) are firstly coated on Cu foil via chemical vapor deposition (CVD) method and G and N doped-G coated Cu foil is transferred to the indium tin oxide (ITO) substrate surface to obtain electrodes. Pd metal is electrodeposited onto the N doped-G/ITO electrode (Pd-N doped-G/ITO). Pd-N doped-G/ITO electrode are characterized with advanced surface characterization methods such as Raman spectroscopy and SEM-EDX. Characterization res...
Citation Formats
M. Rezaeimoghaddam and Z. Dursunkaya, “The effect of surface morphology on the rate of phase change of micron and sub-micron sized 2-D droplets,” Nanoscale and Microscale Thermophysical Engineering, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69849.